Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,21 +2,30 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from transformers import BertTokenizerFast, BertForSequenceClassification
|
4 |
|
5 |
-
def predict_news_category(text, model, tokenizer
|
6 |
-
|
7 |
-
|
|
|
|
|
8 |
outputs = model(**inputs)
|
9 |
probs = outputs[0].softmax(1)
|
|
|
|
|
10 |
_, predicted_category = torch.max(probs, dim=1)
|
|
|
11 |
return predicted_category.item()
|
12 |
|
|
|
13 |
model = BertForSequenceClassification.from_pretrained('akhil2808/EPICS-PROJECT')
|
14 |
-
model.eval()
|
|
|
|
|
15 |
tokenizer = BertTokenizerFast.from_pretrained('akhil2808/EPICS-PROJECT')
|
16 |
|
|
|
17 |
def detect_news_category(text):
|
18 |
-
|
19 |
-
|
20 |
prediction_dict = {1: 'Real News', 0: 'Fake News'}
|
21 |
return prediction_dict[category]
|
22 |
|
@@ -28,3 +37,4 @@ iface = gr.Interface(fn=detect_news_category,
|
|
28 |
theme='huggingface')
|
29 |
|
30 |
iface.launch()
|
|
|
|
2 |
import torch
|
3 |
from transformers import BertTokenizerFast, BertForSequenceClassification
|
4 |
|
5 |
+
def predict_news_category(text, model, tokenizer):
|
6 |
+
# Tokenize input text
|
7 |
+
inputs = tokenizer(text, truncation=True, padding=True, max_length=512, return_tensors='pt')
|
8 |
+
|
9 |
+
# Predict
|
10 |
outputs = model(**inputs)
|
11 |
probs = outputs[0].softmax(1)
|
12 |
+
|
13 |
+
# Get the predicted category
|
14 |
_, predicted_category = torch.max(probs, dim=1)
|
15 |
+
|
16 |
return predicted_category.item()
|
17 |
|
18 |
+
# Load your model
|
19 |
model = BertForSequenceClassification.from_pretrained('akhil2808/EPICS-PROJECT')
|
20 |
+
model.eval() # Set the model to evaluation mode
|
21 |
+
|
22 |
+
# Load tokenizer
|
23 |
tokenizer = BertTokenizerFast.from_pretrained('akhil2808/EPICS-PROJECT')
|
24 |
|
25 |
+
# Function to predict news category
|
26 |
def detect_news_category(text):
|
27 |
+
category = predict_news_category(text, model, tokenizer)
|
28 |
+
# Map the prediction to fake or real news
|
29 |
prediction_dict = {1: 'Real News', 0: 'Fake News'}
|
30 |
return prediction_dict[category]
|
31 |
|
|
|
37 |
theme='huggingface')
|
38 |
|
39 |
iface.launch()
|
40 |
+
|