Spaces:
Sleeping
Sleeping
import re | |
import nltk | |
from nltk.corpus import stopwords | |
from nltk.stem import PorterStemmer | |
from nltk.stem import WordNetLemmatizer | |
def clean_text(text): | |
nltk.download('stopwords') | |
nltk.download('wordnet') | |
stop_words = set(stopwords.words('english')) | |
stemmer = PorterStemmer() | |
lemmatizer = WordNetLemmatizer() | |
text = re.sub(r'[^\w\s]', '', text) | |
text = text.lower() | |
text = [word for word in text.split() if word not in stop_words] | |
text = [stemmer.stem(word) for word in text] | |
text = [lemmatizer.lemmatize(word) for word in text] | |
return ' '.join(text) | |
def clean_data(df): | |
df['Map Data'] = df['Map Data'].fillna('') | |
df = df[df['Map Data'].str.len() > 0] | |
df = df[df['Map Data'].str.len() < 10000] | |
# df['Map Data'] = df['Map Data'].apply(clean_text) | |
return df |