akhaliq's picture
akhaliq HF Staff
Upload app.py with huggingface_hub
e2e1acd verified
# Install required dependency
# !pip install mistral-common
import gradio as gr
import torch
import tempfile
import os
from typing import List, Tuple
from transformers import VoxtralForConditionalGeneration, AutoProcessor
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "mistralai/Voxtral-Mini-3B-2507"
processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16,
device_map=device,
)
def respond(audio_files: List[str], question: str) -> Tuple[str, List[str]]:
if not audio_files:
return "Please upload at least one audio file.", []
conversation = [
{
"role": "user",
"content": [
{"type": "audio", "path": path} for path in audio_files
] + [{"type": "text", "text": question}],
}
]
inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=500)
decoded = processor.batch_decode(
outputs[:, inputs.input_ids.shape[1]:],
skip_special_tokens=True,
)
return decoded[0], audio_files
demo = gr.Interface(
fn=respond,
inputs=[
gr.Audio(type="filepath", label="Audio files", file_count="multiple"),
gr.Textbox(lines=2, placeholder="Ask something about the audio(s)...", label="Question"),
],
outputs=[
gr.Textbox(label="Answer"),
gr.Gallery(label="Uploaded audio files"),
],
title="Voxtral-Mini-3B-2507 Audio Q&A",
description="Upload one or more audio files and ask any question about them.",
examples=[
[
[
"https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/mary_had_lamb.mp3",
"https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
],
"What sport and what nursery rhyme are referenced?",
]
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()