Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,348 Bytes
39ab86c 217ea61 68998ff b993fa8 39ab86c 217ea61 39ab86c 217ea61 39ab86c b993fa8 39ab86c 217ea61 39ab86c b993fa8 39ab86c b993fa8 39ab86c b993fa8 39ab86c b993fa8 39ab86c b993fa8 39ab86c 68998ff 39ab86c b993fa8 39ab86c daf973d b993fa8 daf973d b993fa8 daf973d b993fa8 39ab86c b993fa8 39ab86c b993fa8 39ab86c b993fa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import torch
import spaces
import subprocess
import sys
# Install specific transformers version
subprocess.check_call([sys.executable, "-m", "pip", "install", "transformers==4.48.3"])
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model and tokenizer
model_name = "nvidia/NVIDIA-Nemotron-Nano-9B-v2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = None
def load_model():
global model
if model is None:
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
return model
@spaces.GPU(duration=120)
def generate_response(message, history, enable_reasoning, temperature, top_p, max_tokens):
"""Generate response from the model"""
# Prepare messages with reasoning control
messages = []
# Add system message based on reasoning setting
if enable_reasoning:
messages.append({"role": "system", "content": "/think"})
else:
messages.append({"role": "system", "content": "/no_think"})
# Add conversation history
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Load model if needed
model = load_model()
# Tokenize the conversation
tokenized_chat = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# Set generation parameters based on reasoning mode
if enable_reasoning:
# Recommended settings for reasoning
generation_kwargs = {
"temperature": temperature if temperature > 0 else 0.6,
"top_p": top_p if top_p < 1 else 0.95,
"do_sample": True,
"max_new_tokens": max_tokens,
"eos_token_id": tokenizer.eos_token_id
}
else:
# Greedy search for non-reasoning
generation_kwargs = {
"do_sample": False,
"max_new_tokens": max_tokens,
"eos_token_id": tokenizer.eos_token_id
}
# Generate response
with torch.no_grad():
outputs = model.generate(tokenized_chat, **generation_kwargs)
# Decode and extract the assistant's response
generated_tokens = outputs[0][tokenized_chat.shape[-1]:] # Get only new tokens
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return response
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# NVIDIA Nemotron Nano 9B v2 Chatbot
This chatbot uses the NVIDIA Nemotron Nano 9B v2 model with optional reasoning capabilities.
- **Enable Reasoning**: Activates the model's chain-of-thought reasoning (/think mode)
- **Disable Reasoning**: Uses direct response generation (/no_think mode)
**Note:** Using transformers version 4.48.3 as recommended by the model documentation.
"""
)
chatbot = gr.Chatbot(height=500)
msg = gr.Textbox(
label="Message",
placeholder="Type your message here...",
lines=2
)
with gr.Row():
submit = gr.Button("Send", variant="primary")
clear = gr.Button("Clear")
with gr.Accordion("Advanced Settings", open=False):
enable_reasoning = gr.Checkbox(
label="Enable Reasoning (/think mode)",
value=True,
info="Enable chain-of-thought reasoning for complex queries"
)
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.6,
step=0.1,
label="Temperature",
info="Controls randomness (recommended: 0.6 for reasoning, ignored for non-reasoning)"
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
info="Controls diversity (recommended: 0.95 for reasoning, ignored for non-reasoning)"
)
max_tokens = gr.Slider(
minimum=32,
maximum=2048,
value=1024,
step=32,
label="Max New Tokens",
info="Maximum number of tokens to generate (recommended: 1024+ for reasoning)"
)
def user_submit(message, history):
return "", history + [[message, None]]
def bot_response(history, enable_reasoning, temperature, top_p, max_tokens):
if not history:
return history
message = history[-1][0]
try:
response = generate_response(
message,
history[:-1],
enable_reasoning,
temperature,
top_p,
max_tokens
)
history[-1][1] = response
except Exception as e:
history[-1][1] = f"Error generating response: {str(e)}"
return history
msg.submit(
user_submit,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot_response,
[chatbot, enable_reasoning, temperature, top_p, max_tokens],
chatbot
)
submit.click(
user_submit,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot_response,
[chatbot, enable_reasoning, temperature, top_p, max_tokens],
chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
# Example prompts
gr.Examples(
examples=[
"Write a haiku about GPUs",
"Explain quantum computing in simple terms",
"What is the capital of France?",
"Solve this step by step: If a train travels 120 miles in 2 hours, what is its average speed?",
"Write a short story about a robot learning to paint"
],
inputs=msg
)
if __name__ == "__main__":
demo.launch() |