Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import spaces | |
# Load model and tokenizer | |
model_name_or_path = "tencent/Hunyuan-MT-7B" | |
print("Loading model... This may take a few minutes.") | |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name_or_path, | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
) | |
def respond(message, history, system_message=None, max_tokens=None, temperature=None, top_p=None): | |
""" | |
Generate response from Hunyuan-MT model | |
""" | |
# Set default values if None (happens during example caching) | |
if system_message is None: | |
system_message = "You are a helpful AI assistant." | |
if max_tokens is None: | |
max_tokens = 512 | |
if temperature is None: | |
temperature = 0.7 | |
if top_p is None: | |
top_p = 0.95 | |
# Build conversation history | |
messages = [] | |
# Add system message if provided | |
if system_message: | |
messages.append({"role": "system", "content": system_message}) | |
# Add conversation history | |
for user_msg, assistant_msg in history: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
# Add current message | |
messages.append({"role": "user", "content": message}) | |
# Tokenize the conversation | |
tokenized_chat = tokenizer.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
) | |
# Generate response | |
with torch.no_grad(): | |
outputs = model.generate( | |
tokenized_chat.to(model.device), | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True if temperature > 0 else False, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Decode only the new tokens | |
response = tokenizer.decode(outputs[0][tokenized_chat.shape[-1]:], skip_special_tokens=True) | |
return response | |
# Create Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a helpful AI assistant.", | |
label="System Message", | |
lines=2 | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=512, | |
step=1, | |
label="Max New Tokens" | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=2, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)" | |
), | |
], | |
title="Hunyuan-MT-7B Chatbot", | |
description="Chat with Tencent's Hunyuan-MT-7B model. This model is particularly good at translation tasks.", | |
examples=[ | |
["Translate to Chinese: It's on the house.", "You are a helpful AI assistant.", 512, 0.7, 0.95], | |
["What are the main differences between Python and JavaScript?", "You are a helpful AI assistant.", 512, 0.7, 0.95], | |
["Explain quantum computing in simple terms.", "You are a helpful AI assistant.", 512, 0.7, 0.95], | |
], | |
cache_examples=False, | |
theme="soft" | |
) | |
if __name__ == "__main__": | |
demo.launch() |