Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 3,146 Bytes
			
			| f7acea1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | # Installation
We now provide a *clean* version of GFPGAN, which does not require customized CUDA extensions. See [here](README.md#installation) for this easier installation.<br>
If you want want to use the original model in our paper, please follow the instructions below.
1. Clone repo
    ```bash
    git clone https://github.com/xinntao/GFPGAN.git
    cd GFPGAN
    ```
1. Install dependent packages
    As StyleGAN2 uses customized PyTorch C++ extensions, you need to **compile them during installation** or **load them just-in-time(JIT)**.
    You can refer to [BasicSR-INSTALL.md](https://github.com/xinntao/BasicSR/blob/master/INSTALL.md) for more details.
    **Option 1: Load extensions just-in-time(JIT)** (For those just want to do simple inferences, may have less issues)
    ```bash
    # Install basicsr - https://github.com/xinntao/BasicSR
    # We use BasicSR for both training and inference
    pip install basicsr
    # Install facexlib - https://github.com/xinntao/facexlib
    # We use face detection and face restoration helper in the facexlib package
    pip install facexlib
    pip install -r requirements.txt
    python setup.py develop
    # remember to set BASICSR_JIT=True before your running commands
    ```
    **Option 2: Compile extensions during installation** (For those need to train/inference for many times)
    ```bash
    # Install basicsr - https://github.com/xinntao/BasicSR
    # We use BasicSR for both training and inference
    # Set BASICSR_EXT=True to compile the cuda extensions in the BasicSR - It may take several minutes to compile, please be patient
    # Add -vvv for detailed log prints
    BASICSR_EXT=True pip install basicsr -vvv
    # Install facexlib - https://github.com/xinntao/facexlib
    # We use face detection and face restoration helper in the facexlib package
    pip install facexlib
    pip install -r requirements.txt
    python setup.py develop
    ```
## :zap: Quick Inference
Download pre-trained models: [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth)
```bash
wget https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth -P experiments/pretrained_models
```
- Option 1: Load extensions just-in-time(JIT)
    ```bash
    BASICSR_JIT=True python inference_gfpgan.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs --save_root results --arch original --channel 1
    # for aligned images
    BASICSR_JIT=True python inference_gfpgan.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/cropped_faces --save_root results --arch original --channel 1 --aligned
    ```
- Option 2: Have successfully compiled extensions during installation
    ```bash
    python inference_gfpgan.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs --save_root results --arch original --channel 1
    # for aligned images
    python inference_gfpgan.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/cropped_faces --save_root results --arch original --channel 1 --aligned
    ```
 | 
