Spaces:
Paused
Paused
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import random | |
| import os | |
| import tempfile | |
| from PIL import Image, ImageOps | |
| import pillow_heif # For HEIF/AVIF support | |
| # Import the pipeline from diffusers | |
| from diffusers import FluxKontextPipeline | |
| # --- Constants --- | |
| MAX_SEED = np.iinfo(np.int32).max | |
| # --- Global pipeline variable --- | |
| pipe = None | |
| def load_model(): | |
| """Load the model on CPU first, then move to GPU when needed""" | |
| global pipe | |
| if pipe is None: | |
| # Register HEIF opener with PIL for AVIF/HEIF support | |
| pillow_heif.register_heif_opener() | |
| # Get token from environment variable | |
| hf_token = os.getenv("HF_TOKEN") | |
| if hf_token: | |
| pipe = FluxKontextPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-Kontext-dev", | |
| torch_dtype=torch.bfloat16, | |
| token=hf_token, | |
| ) | |
| else: | |
| raise gr.Error("HF_TOKEN environment variable not found. Please add your Hugging Face token to the Space settings.") | |
| return pipe | |
| # --- Core Inference Function for ChatInterface --- | |
| # Set duration based on expected inference time | |
| def chat_fn(message, chat_history, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True)): | |
| """ | |
| Performs image generation or editing based on user input from the chat interface. | |
| """ | |
| # Load and move model to GPU within the decorated function | |
| pipe = load_model() | |
| pipe = pipe.to("cuda") | |
| prompt = message["text"] | |
| files = message["files"] | |
| if not prompt and not files: | |
| raise gr.Error("Please provide a prompt and/or upload an image.") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device="cuda").manual_seed(int(seed)) | |
| input_image = None | |
| if files: | |
| print(f"Received image: {files[0]}") | |
| try: | |
| # Try to open and convert the image | |
| input_image = Image.open(files[0]) | |
| # Convert to RGB if needed (handles RGBA, P, etc.) | |
| if input_image.mode != "RGB": | |
| input_image = input_image.convert("RGB") | |
| # Auto-orient the image based on EXIF data | |
| input_image = ImageOps.exif_transpose(input_image) | |
| except Exception as e: | |
| raise gr.Error(f"Could not process the uploaded image: {str(e)}. Please try uploading a different image format (JPEG, PNG, WebP).") | |
| image = pipe( | |
| image=input_image, | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=steps, | |
| generator=generator, | |
| ).images[0] | |
| else: | |
| print(f"Received prompt for text-to-image: {prompt}") | |
| image = pipe( | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=steps, | |
| generator=generator, | |
| ).images[0] | |
| # Move model back to CPU to free GPU memory | |
| pipe = pipe.to("cpu") | |
| torch.cuda.empty_cache() | |
| # Return the PIL Image as a Gradio Image component | |
| return gr.Image(value=image) | |
| # --- UI Definition using gr.ChatInterface --- | |
| seed_slider = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42) | |
| randomize_checkbox = gr.Checkbox(label="Randomize seed", value=False) | |
| guidance_slider = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=2.5) | |
| steps_slider = gr.Slider(label="Steps", minimum=1, maximum=30, value=28, step=1) | |
| # --- Examples without external URLs --- | |
| # Remove examples temporarily to avoid format issues | |
| examples = None | |
| demo = gr.ChatInterface( | |
| fn=chat_fn, | |
| title="FLUX.1 Kontext [dev]", | |
| description="""<p style='text-align: center;'> | |
| A simple chat UI for the <b>FLUX.1 Kontext</b> model running on ZeroGPU. | |
| <br> | |
| To edit an image, upload it and type your instructions (e.g., "Add a hat"). | |
| <br> | |
| To generate an image, just type a prompt (e.g., "A photo of an astronaut on a horse"). | |
| <br> | |
| Find the model on <a href='https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev' target='_blank'>Hugging Face</a>. | |
| </p>""", | |
| multimodal=True, # This is important for MultimodalTextbox to work | |
| textbox=gr.MultimodalTextbox( | |
| file_types=["image"], | |
| placeholder="Type a prompt and/or upload an image...", | |
| render=False | |
| ), | |
| additional_inputs=[ | |
| seed_slider, | |
| randomize_checkbox, | |
| guidance_slider, | |
| steps_slider | |
| ], | |
| examples=examples, | |
| theme="soft" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |