Update app.py
Browse files
app.py
CHANGED
|
@@ -30,19 +30,22 @@ model_checkpoint = st.sidebar.radio("", model_list)
|
|
| 30 |
st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
|
| 31 |
st.sidebar.write("")
|
| 32 |
|
| 33 |
-
xlm_agg_strategy_info = "'aggregation_strategy' can be selected as 'simple' or 'none' for 'xlm-roberta' because of the RoBERTa model's tokenization approach."
|
| 34 |
|
| 35 |
-
st.sidebar.header("Select Aggregation Strategy Type")
|
| 36 |
if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner":
|
| 37 |
-
aggregation =
|
| 38 |
-
st.sidebar.
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
st.sidebar.write("")
|
| 43 |
st.sidebar.write("This English NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta.")
|
| 44 |
else:
|
| 45 |
-
aggregation =
|
|
|
|
| 46 |
|
| 47 |
st.sidebar.write("Please refer 'https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html' for entity grouping with aggregation_strategy parameter.")
|
| 48 |
|
|
@@ -73,8 +76,18 @@ if Run_Button == True:
|
|
| 73 |
|
| 74 |
ner_pipeline = setModel(model_checkpoint, aggregation)
|
| 75 |
output = ner_pipeline(input_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
df = pd.DataFrame.from_dict(
|
| 78 |
if aggregation != "none":
|
| 79 |
cols_to_keep = ['word','entity_group','score','start','end']
|
| 80 |
else:
|
|
@@ -90,7 +103,7 @@ if Run_Button == True:
|
|
| 90 |
spacy_display["text"] = input_text
|
| 91 |
spacy_display["title"] = None
|
| 92 |
|
| 93 |
-
for entity in
|
| 94 |
if aggregation != "none":
|
| 95 |
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
|
| 96 |
else:
|
|
|
|
| 30 |
st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
|
| 31 |
st.sidebar.write("")
|
| 32 |
|
| 33 |
+
# xlm_agg_strategy_info = "'aggregation_strategy' can be selected as 'simple' or 'none' for 'xlm-roberta' because of the RoBERTa model's tokenization approach."
|
| 34 |
|
| 35 |
+
# st.sidebar.header("Select Aggregation Strategy Type")
|
| 36 |
if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner":
|
| 37 |
+
aggregation = "simple"
|
| 38 |
+
# aggregation = st.sidebar.radio("", ('simple', 'none'))
|
| 39 |
+
# st.sidebar.write(xlm_agg_strategy_info)
|
| 40 |
+
elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english" or model_checkpoint == "tner/tner-xlm-roberta-base-ontonotes5":
|
| 41 |
+
aggregation = "simple"
|
| 42 |
+
# aggregation = st.sidebar.radio("", ('simple', 'none'))
|
| 43 |
+
# st.sidebar.write(xlm_agg_strategy_info)
|
| 44 |
st.sidebar.write("")
|
| 45 |
st.sidebar.write("This English NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta.")
|
| 46 |
else:
|
| 47 |
+
aggregation = "first"
|
| 48 |
+
# aggregation = st.sidebar.radio("", ('first', 'simple', 'average', 'max', 'none'))
|
| 49 |
|
| 50 |
st.sidebar.write("Please refer 'https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html' for entity grouping with aggregation_strategy parameter.")
|
| 51 |
|
|
|
|
| 76 |
|
| 77 |
ner_pipeline = setModel(model_checkpoint, aggregation)
|
| 78 |
output = ner_pipeline(input_text)
|
| 79 |
+
|
| 80 |
+
output_comb = []
|
| 81 |
+
for ind, entity in enumerate(output):
|
| 82 |
+
if ind == 0:
|
| 83 |
+
output_comb.append(entity)
|
| 84 |
+
elif output[ind]["start"] == output[ind-1]["end"]:
|
| 85 |
+
output_comb[ind-1]["entity"] = output_comb[ind-1]["entity"] + output[ind]["entity"]
|
| 86 |
+
output_comb[ind-1]["end"] = output[ind]["end"]
|
| 87 |
+
else:
|
| 88 |
+
output_comb.append(entity)
|
| 89 |
|
| 90 |
+
df = pd.DataFrame.from_dict(output_comb)
|
| 91 |
if aggregation != "none":
|
| 92 |
cols_to_keep = ['word','entity_group','score','start','end']
|
| 93 |
else:
|
|
|
|
| 103 |
spacy_display["text"] = input_text
|
| 104 |
spacy_display["title"] = None
|
| 105 |
|
| 106 |
+
for entity in output_comb:
|
| 107 |
if aggregation != "none":
|
| 108 |
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
|
| 109 |
else:
|