Spaces:
Running
Running
| import os | |
| import time | |
| import cv2 | |
| import matplotlib.pyplot as plt | |
| from PIL import Image | |
| import numpy as np | |
| import onnxruntime as ort | |
| import pandas as pd | |
| from typing import Tuple | |
| from huggingface_hub import hf_hub_download | |
| from constants import REPO_ID, FILENAME, MODEL_DIR, MODEL_PATH | |
| from metrics_storage import MetricsStorage | |
| def download_model(): | |
| """Download the model using Hugging Face Hub""" | |
| # Ensure model directory exists | |
| os.makedirs(MODEL_DIR, exist_ok=True) | |
| try: | |
| print(f"Downloading model from {REPO_ID}...") | |
| # Download the model file from Hugging Face Hub | |
| model_path = hf_hub_download( | |
| repo_id=REPO_ID, | |
| filename=FILENAME, | |
| local_dir=MODEL_DIR, | |
| force_download=True, | |
| cache_dir=None, | |
| ) | |
| # Move the file to the correct location if it's not there already | |
| if os.path.exists(model_path) and model_path != MODEL_PATH: | |
| os.rename(model_path, MODEL_PATH) | |
| # Remove empty directories if they exist | |
| empty_dir = os.path.join(MODEL_DIR, "tune") | |
| if os.path.exists(empty_dir): | |
| import shutil | |
| shutil.rmtree(empty_dir) | |
| print("Model downloaded successfully!") | |
| return MODEL_PATH | |
| except Exception as e: | |
| print(f"Error downloading model: {e}") | |
| raise e | |
| class SignatureDetector: | |
| def __init__(self, model_path: str = MODEL_PATH): | |
| self.model_path = model_path | |
| self.classes = ["signature"] | |
| self.input_width = 640 | |
| self.input_height = 640 | |
| # Initialize ONNX Runtime session | |
| options = ort.SessionOptions() | |
| options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL | |
| self.session = ort.InferenceSession(self.model_path, options) | |
| self.session.set_providers( | |
| ["OpenVINOExecutionProvider"], [{"device_type": "CPU"}] | |
| ) | |
| self.metrics_storage = MetricsStorage() | |
| def update_metrics(self, inference_time: float) -> None: | |
| """ | |
| Updates metrics in persistent storage. | |
| Args: | |
| inference_time (float): The time taken for inference in milliseconds. | |
| """ | |
| self.metrics_storage.add_metric(inference_time) | |
| def get_metrics(self) -> dict: | |
| """ | |
| Retrieves current metrics from storage. | |
| Returns: | |
| dict: A dictionary containing times, total inferences, average time, and start index. | |
| """ | |
| times = self.metrics_storage.get_recent_metrics() | |
| total = self.metrics_storage.get_total_inferences() | |
| avg = self.metrics_storage.get_average_time() | |
| start_index = max(0, total - len(times)) | |
| return { | |
| "times": times, | |
| "total_inferences": total, | |
| "avg_time": avg, | |
| "start_index": start_index, | |
| } | |
| def load_initial_metrics( | |
| self, | |
| ) -> Tuple[None, str, plt.Figure, plt.Figure, str, str]: | |
| """ | |
| Loads initial metrics for display. | |
| Returns: | |
| tuple: A tuple containing None, total inferences, histogram figure, line figure, average time, and last time. | |
| """ | |
| metrics = self.get_metrics() | |
| if not metrics["times"]: | |
| return None, None, None, None, None, None | |
| hist_data = pd.DataFrame({"Time (ms)": metrics["times"]}) | |
| indices = range( | |
| metrics["start_index"], metrics["start_index"] + len(metrics["times"]) | |
| ) | |
| line_data = pd.DataFrame( | |
| { | |
| "Inference": indices, | |
| "Time (ms)": metrics["times"], | |
| "Mean": [metrics["avg_time"]] * len(metrics["times"]), | |
| } | |
| ) | |
| hist_fig, line_fig = self.create_plots(hist_data, line_data) | |
| return ( | |
| None, | |
| f"{metrics['total_inferences']}", | |
| hist_fig, | |
| line_fig, | |
| f"{metrics['avg_time']:.2f}", | |
| f"{metrics['times'][-1]:.2f}", | |
| ) | |
| def create_plots( | |
| self, hist_data: pd.DataFrame, line_data: pd.DataFrame | |
| ) -> Tuple[plt.Figure, plt.Figure]: | |
| """ | |
| Helper method to create plots. | |
| Args: | |
| hist_data (pd.DataFrame): Data for histogram plot. | |
| line_data (pd.DataFrame): Data for line plot. | |
| Returns: | |
| tuple: A tuple containing histogram figure and line figure. | |
| """ | |
| plt.style.use("dark_background") | |
| # Histogram plot | |
| hist_fig, hist_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5") | |
| hist_ax.set_facecolor("#f0f0f5") | |
| hist_data.hist( | |
| bins=20, ax=hist_ax, color="#4F46E5", alpha=0.7, edgecolor="white" | |
| ) | |
| hist_ax.set_title( | |
| "Distribution of Inference Times", | |
| pad=15, | |
| fontsize=12, | |
| color="#1f2937", | |
| ) | |
| hist_ax.set_xlabel("Time (ms)", color="#374151") | |
| hist_ax.set_ylabel("Frequency", color="#374151") | |
| hist_ax.tick_params(colors="#4b5563") | |
| hist_ax.grid(True, linestyle="--", alpha=0.3) | |
| # Line plot | |
| line_fig, line_ax = plt.subplots(figsize=(8, 4), facecolor="#f0f0f5") | |
| line_ax.set_facecolor("#f0f0f5") | |
| line_data.plot( | |
| x="Inference", | |
| y="Time (ms)", | |
| ax=line_ax, | |
| color="#4F46E5", | |
| alpha=0.7, | |
| label="Time", | |
| ) | |
| line_data.plot( | |
| x="Inference", | |
| y="Mean", | |
| ax=line_ax, | |
| color="#DC2626", | |
| linestyle="--", | |
| label="Mean", | |
| ) | |
| line_ax.set_title( | |
| "Inference Time per Execution", pad=15, fontsize=12, color="#1f2937" | |
| ) | |
| line_ax.set_xlabel("Inference Number", color="#374151") | |
| line_ax.set_ylabel("Time (ms)", color="#374151") | |
| line_ax.tick_params(colors="#4b5563") | |
| line_ax.grid(True, linestyle="--", alpha=0.3) | |
| line_ax.legend( | |
| frameon=True, facecolor="#f0f0f5", edgecolor="white", labelcolor="black" | |
| ) | |
| hist_fig.tight_layout() | |
| line_fig.tight_layout() | |
| plt.close(hist_fig) | |
| plt.close(line_fig) | |
| return hist_fig, line_fig | |
| def preprocess(self, img: Image.Image) -> Tuple[np.ndarray, np.ndarray]: | |
| """ | |
| Preprocesses the image for inference. | |
| Args: | |
| img: The image to process. | |
| Returns: | |
| tuple: A tuple containing the processed image data and the original image. | |
| """ | |
| # Convert PIL Image to cv2 format | |
| img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
| self.img_height, self.img_width = img_cv2.shape[:2] | |
| # Convert back to RGB for processing | |
| img_rgb = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB) | |
| # Resize | |
| img_resized = cv2.resize(img_rgb, (self.input_width, self.input_height)) | |
| # Normalize and transpose | |
| image_data = np.array(img_resized) / 255.0 | |
| image_data = np.transpose(image_data, (2, 0, 1)) | |
| image_data = np.expand_dims(image_data, axis=0).astype(np.float32) | |
| return image_data, img_cv2 | |
| def draw_detections( | |
| self, img: np.ndarray, box: list, score: float, class_id: int | |
| ) -> None: | |
| """ | |
| Draws the detections on the image. | |
| Args: | |
| img: The image to draw on. | |
| box (list): The bounding box coordinates. | |
| score (float): The confidence score. | |
| class_id (int): The class ID. | |
| """ | |
| x1, y1, w, h = box | |
| self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) | |
| color = self.color_palette[class_id] | |
| cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) | |
| label = f"{self.classes[class_id]}: {score:.2f}" | |
| (label_width, label_height), _ = cv2.getTextSize( | |
| label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1 | |
| ) | |
| label_x = x1 | |
| label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 | |
| cv2.rectangle( | |
| img, | |
| (int(label_x), int(label_y - label_height)), | |
| (int(label_x + label_width), int(label_y + label_height)), | |
| color, | |
| cv2.FILLED, | |
| ) | |
| cv2.putText( | |
| img, | |
| label, | |
| (int(label_x), int(label_y)), | |
| cv2.FONT_HERSHEY_SIMPLEX, | |
| 0.5, | |
| (0, 0, 0), | |
| 1, | |
| cv2.LINE_AA, | |
| ) | |
| def postprocess( | |
| self, | |
| input_image: np.ndarray, | |
| output: np.ndarray, | |
| conf_thres: float, | |
| iou_thres: float, | |
| ) -> np.ndarray: | |
| """ | |
| Postprocesses the output from inference. | |
| Args: | |
| input_image: The input image. | |
| output: The output from inference. | |
| conf_thres (float): Confidence threshold for detection. | |
| iou_thres (float): Intersection over Union threshold for detection. | |
| Returns: | |
| np.ndarray: The output image with detections drawn | |
| """ | |
| outputs = np.transpose(np.squeeze(output[0])) | |
| rows = outputs.shape[0] | |
| boxes = [] | |
| scores = [] | |
| class_ids = [] | |
| x_factor = self.img_width / self.input_width | |
| y_factor = self.img_height / self.input_height | |
| for i in range(rows): | |
| classes_scores = outputs[i][4:] | |
| max_score = np.amax(classes_scores) | |
| if max_score >= conf_thres: | |
| class_id = np.argmax(classes_scores) | |
| x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3] | |
| left = int((x - w / 2) * x_factor) | |
| top = int((y - h / 2) * y_factor) | |
| width = int(w * x_factor) | |
| height = int(h * y_factor) | |
| class_ids.append(class_id) | |
| scores.append(max_score) | |
| boxes.append([left, top, width, height]) | |
| indices = cv2.dnn.NMSBoxes(boxes, scores, conf_thres, iou_thres) | |
| for i in indices: | |
| box = boxes[i] | |
| score = scores[i] | |
| class_id = class_ids[i] | |
| self.draw_detections(input_image, box, score, class_id) | |
| return cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB) | |
| def detect( | |
| self, image: Image.Image, conf_thres: float = 0.25, iou_thres: float = 0.5 | |
| ) -> Tuple[Image.Image, dict]: | |
| """ | |
| Detects signatures in the given image. | |
| Args: | |
| image: The image to process. | |
| conf_thres (float): Confidence threshold for detection. | |
| iou_thres (float): Intersection over Union threshold for detection. | |
| Returns: | |
| tuple: A tuple containing the output image and metrics. | |
| """ | |
| # Preprocess the image | |
| img_data, original_image = self.preprocess(image) | |
| # Run inference | |
| start_time = time.time() | |
| outputs = self.session.run(None, {self.session.get_inputs()[0].name: img_data}) | |
| inference_time = (time.time() - start_time) * 1000 # Convert to milliseconds | |
| # Postprocess the results | |
| output_image = self.postprocess(original_image, outputs, conf_thres, iou_thres) | |
| self.update_metrics(inference_time) | |
| return output_image, self.get_metrics() | |
| def detect_example( | |
| self, image: Image.Image, conf_thres: float = 0.25, iou_thres: float = 0.5 | |
| ) -> Image.Image: | |
| """ | |
| Wrapper method for examples that returns only the image. | |
| Args: | |
| image: The image to process. | |
| conf_thres (float): Confidence threshold for detection. | |
| iou_thres (float): Intersection over Union threshold for detection. | |
| Returns: | |
| The output image. | |
| """ | |
| output_image, _ = self.detect(image, conf_thres, iou_thres) | |
| return output_image | |