akazmi's picture
Update app.py
cb9c4c3 verified
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
# Sample Data Format
st.subheader('Sample Data Format:')
st.write("""
The data should be in the following format with the listed columns:
| Customer Name | Date | City | Country | State | Product Name | Product Attribute 1 | Product Attribute 2 | Product Attribute 3 | Product Attribute 4 | Net Sales Value | Margin Amount | Cost |
|----------------|------------|--------------|-------------|-------------|-----------------|---------------------|---------------------|---------------------|---------------------|------------------|---------------|-------|
| John Doe | 2024-01-01 | New York | USA | NY | Product A | Attribute 1A | Attribute 2A | Attribute 3A | Attribute 4A | 1000 | 300 | 700 |
| Jane Smith | 2024-01-02 | Los Angeles | USA | CA | Product B | Attribute 1B | Attribute 2B | Attribute 3B | Attribute 4B | 1500 | 400 | 1100 |
| Bob Johnson | 2024-02-15 | Chicago | USA | IL | Product A | Attribute 1A | Attribute 2A | Attribute 3A | Attribute 4A | 1200 | 350 | 850 |
| Alice Williams | 2024-03-10 | Miami | USA | FL | Product C | Attribute 1C | Attribute 2C | Attribute 3C | Attribute 4C | 2000 | 500 | 1500 |
| Charlie Brown | 2024-04-05 | Houston | USA | TX | Product B | Attribute 1B | Attribute 2B | Attribute 3B | Attribute 4B | 1800 | 450 | 1350 |
""")
# File upload functionality
st.sidebar.header("Upload Data")
uploaded_file = st.sidebar.file_uploader("Choose a CSV file", type=["csv"])
# Check if file is uploaded
if uploaded_file is not None:
# Load the data
df = pd.read_csv(uploaded_file)
# Convert Date to datetime format if it's in string format
if 'Date' in df.columns:
df['Date'] = pd.to_datetime(df['Date'])
# Add 'Year' and 'Month' columns for easy filtering and analysis
df['Year'] = df['Date'].dt.year
df['Month'] = df['Date'].dt.month
# Sidebar Filters
st.sidebar.header("Filter Options")
# Text Input for Customer and Product
customer_query = st.sidebar.text_input('Enter Customer Name (partial or full):').strip().lower()
product_query = st.sidebar.text_input('Enter Product Name (partial or full):').strip().lower()
city_query = st.sidebar.text_input('Enter City (partial or full):').strip().lower()
state_query = st.sidebar.text_input('Enter State (partial or full):').strip().lower()
country_query = st.sidebar.text_input('Enter Country (partial or full):').strip().lower()
# Date Range Selection
start_date = st.sidebar.date_input('Start Date:', df['Date'].min())
end_date = st.sidebar.date_input('End Date:', df['Date'].max())
# Filter Data by Date Range
filtered_df = df[
(df['Date'] >= pd.to_datetime(start_date)) &
(df['Date'] <= pd.to_datetime(end_date))
]
# Filter Data by Customer Name
if customer_query:
filtered_df = filtered_df[filtered_df['Customer Name'].str.contains(customer_query, case=False, na=False)]
# Filter Data by Product Name
if product_query:
filtered_df = filtered_df[filtered_df['Product Name'].str.contains(product_query, case=False, na=False)]
# Filter Data by City
if city_query:
filtered_df = filtered_df[filtered_df['City'].str.contains(city_query, case=False, na=False)]
# Filter Data by State
if state_query:
filtered_df = filtered_df[filtered_df['State'].str.contains(state_query, case=False, na=False)]
# Filter Data by Country
if country_query:
filtered_df = filtered_df[filtered_df['Country'].str.contains(country_query, case=False, na=False)]
# Add 'Net Sales Value - Cost' as a new column
filtered_df['Net Sales Value - Cost'] = filtered_df['Net Sales Value'] - filtered_df['Cost']
# Display Filtered Data
st.write(f"Filtered Data: {len(filtered_df)} records found.")
st.dataframe(filtered_df)
if not filtered_df.empty:
# KPI Metrics
st.subheader("Key Financial Metrics")
# Profit for the Year (Calculated as Net Sales Value - Cost)
profit_for_the_year = filtered_df['Net Sales Value'] - filtered_df['Cost']
st.metric("Profit for the Year", f"${profit_for_the_year.sum():,.2f}")
# Gross Margin (Net Sales Value - Cost)
gross_margin = filtered_df['Net Sales Value'] - filtered_df['Cost']
st.metric("Gross Margin", f"${gross_margin.sum():,.2f}")
# Total Sales
total_sales = filtered_df['Net Sales Value'].sum()
st.metric("Total Sales", f"${total_sales:,.2f}")
# Visualization 1: Profit and Loss Overview (Table)
st.subheader("Profit and Loss Overview")
pnl_data = filtered_df[['Customer Name', 'Product Name', 'Net Sales Value', 'Cost', 'Net Sales Value - Cost']]
pnl_data.columns = ['Customer', 'Product', 'Sales', 'Cost', 'Profit']
st.dataframe(pnl_data)
# Visualization 2: Matrix View (like Power BI Matrix)
st.subheader("Matrix View of Financial Data")
matrix_data = filtered_df.pivot_table(
values='Net Sales Value',
index=['Year', 'Customer Name'],
columns=['Product Name'],
aggfunc='sum',
fill_value=0
)
st.dataframe(matrix_data)
# Visualization 3: Sales Trend over Time
st.subheader("Sales Trend over Time")
sales_trend = filtered_df.groupby(['Year', 'Month'])['Net Sales Value'].sum().reset_index()
fig = px.line(sales_trend, x='Month', y='Net Sales Value', color='Year', title="Sales Trend over Time")
st.plotly_chart(fig)
# Visualization 4: Profit Margin Visualization (Bar Chart)
st.subheader("Profit Margin per Product")
profit_margin_data = filtered_df.groupby('Product Name').apply(
lambda x: (x['Net Sales Value'] - x['Cost']).sum() / x['Net Sales Value'].sum()
).reset_index(name="Profit Margin")
fig = px.bar(profit_margin_data, x='Product Name', y='Profit Margin', title="Profit Margin per Product")
st.plotly_chart(fig)
else:
st.write("No data available for the selected filters.")
else:
st.write("Please upload a CSV file to get started.")