akashlives commited on
Commit
160fb8b
·
verified ·
1 Parent(s): 182aaf6
Files changed (4) hide show
  1. Dockerfile +11 -0
  2. app.py +159 -0
  3. chainlit.md +1 -0
  4. requirements.txt +132 -0
Dockerfile ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+ RUN useradd -m -u 1000 user
3
+ USER user
4
+ ENV HOME=/home/user \
5
+ PATH=/home/user/.local/bin:$PATH
6
+ WORKDIR $HOME/app
7
+ COPY --chown=user . $HOME/app
8
+ COPY ./requirements.txt ~/app/requirements.txt
9
+ RUN pip install -r requirements.txt
10
+ COPY . .
11
+ CMD ["chainlit", "run", "app.py", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import chainlit as cl
3
+ from dotenv import load_dotenv
4
+ from operator import itemgetter
5
+ from langchain_huggingface import HuggingFaceEndpoint
6
+ from langchain_community.document_loaders import TextLoader
7
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
8
+ from langchain_community.vectorstores import FAISS
9
+ from langchain_huggingface import HuggingFaceEndpointEmbeddings
10
+ from langchain_core.prompts import PromptTemplate
11
+ from langchain.schema.output_parser import StrOutputParser
12
+ from langchain.schema.runnable import RunnablePassthrough
13
+ from langchain.schema.runnable.config import RunnableConfig
14
+
15
+ # GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
16
+ # ---- ENV VARIABLES ---- #
17
+ """
18
+ This function will load our environment file (.env) if it is present.
19
+
20
+ NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
21
+ """
22
+ load_dotenv()
23
+
24
+ """
25
+ We will load our environment variables here.
26
+ """
27
+ HF_LLM_ENDPOINT = os.environ["HF_LLM_ENDPOINT"]
28
+ HF_EMBED_ENDPOINT = os.environ["HF_EMBED_ENDPOINT"]
29
+ HF_TOKEN = os.environ["HF_TOKEN"]
30
+
31
+ # ---- GLOBAL DECLARATIONS ---- #
32
+
33
+ # -- RETRIEVAL -- #
34
+ """
35
+ 1. Load Documents from Text File
36
+ 2. Split Documents into Chunks
37
+ 3. Load HuggingFace Embeddings (remember to use the URL we set above)
38
+ 4. Index Files if they do not exist, otherwise load the vectorstore
39
+ """
40
+ document_loader = TextLoader("./data/paul_graham_essays.txt")
41
+ documents = document_loader.load()
42
+
43
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=30)
44
+ split_documents = text_splitter.split_documents(documents)
45
+
46
+ hf_embeddings = HuggingFaceEndpointEmbeddings(
47
+ model=HF_EMBED_ENDPOINT,
48
+ task="feature-extraction",
49
+ huggingfacehub_api_token=HF_TOKEN,
50
+ )
51
+
52
+ if os.path.exists("./data/vectorstore"):
53
+ vectorstore = FAISS.load_local(
54
+ "./data/vectorstore",
55
+ hf_embeddings,
56
+ allow_dangerous_deserialization=True, # this is necessary to load the vectorstore from disk as it's stored as a `.pkl` file.
57
+ )
58
+ hf_retriever = vectorstore.as_retriever()
59
+ print("Loaded Vectorstore")
60
+ else:
61
+ print("Indexing Files")
62
+ os.makedirs("./data/vectorstore", exist_ok=True)
63
+ for i in range(0, len(split_documents), 32):
64
+ if i == 0:
65
+ vectorstore = FAISS.from_documents(
66
+ split_documents[i : i + 32], hf_embeddings
67
+ )
68
+ continue
69
+ vectorstore.add_documents(split_documents[i : i + 32])
70
+ vectorstore.save_local("./data/vectorstore")
71
+
72
+ hf_retriever = vectorstore.as_retriever()
73
+
74
+ # -- AUGMENTED -- #
75
+ """
76
+ 1. Define a String Template
77
+ 2. Create a Prompt Template from the String Template
78
+ """
79
+ RAG_PROMPT_TEMPLATE = """\
80
+ <|start_header_id|>system<|end_header_id|>
81
+ You are a helpful assistant. You answer user questions based on provided context. If you can't answer the question with the provided context, say you don't know.<|eot_id|>
82
+
83
+ <|start_header_id|>user<|end_header_id|>
84
+ User Query:
85
+ {query}
86
+
87
+ Context:
88
+ {context}<|eot_id|>
89
+
90
+ <|start_header_id|>assistant<|end_header_id|>
91
+ """
92
+
93
+ rag_prompt = PromptTemplate.from_template(RAG_PROMPT_TEMPLATE)
94
+
95
+ # -- GENERATION -- #
96
+ """
97
+ 1. Create a HuggingFaceEndpoint for the LLM
98
+ """
99
+ hf_llm = HuggingFaceEndpoint(
100
+ endpoint_url=HF_LLM_ENDPOINT,
101
+ max_new_tokens=512,
102
+ top_k=10,
103
+ top_p=0.95,
104
+ temperature=0.3,
105
+ repetition_penalty=1.15,
106
+ huggingfacehub_api_token=HF_TOKEN,
107
+ )
108
+
109
+
110
+ @cl.author_rename
111
+ def rename(original_author: str):
112
+ """
113
+ This function can be used to rename the 'author' of a message.
114
+
115
+ In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
116
+ """
117
+ rename_dict = {"Assistant": "Paul Graham Essay Bot"}
118
+ return rename_dict.get(original_author, original_author)
119
+
120
+
121
+ @cl.on_chat_start
122
+ async def start_chat():
123
+ """
124
+ This function will be called at the start of every user session.
125
+
126
+ We will build our LCEL RAG chain here, and store it in the user session.
127
+
128
+ The user session is a dictionary that is unique to each user session, and is stored in the memory of the server.
129
+ """
130
+
131
+ lcel_rag_chain = (
132
+ {"context": itemgetter("query") | hf_retriever, "query": itemgetter("query")}
133
+ | rag_prompt
134
+ | hf_llm
135
+ )
136
+
137
+ cl.user_session.set("lcel_rag_chain", lcel_rag_chain)
138
+
139
+
140
+ @cl.on_message
141
+ async def main(message: cl.Message):
142
+ """
143
+ This function will be called every time a message is recieved from a session.
144
+
145
+ We will use the LCEL RAG chain to generate a response to the user query.
146
+
147
+ The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
148
+ """
149
+ lcel_rag_chain = cl.user_session.get("lcel_rag_chain")
150
+
151
+ msg = cl.Message(content="")
152
+
153
+ for chunk in await cl.make_async(lcel_rag_chain.stream)(
154
+ {"query": message.content},
155
+ config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
156
+ ):
157
+ await msg.stream_token(chunk)
158
+
159
+ await msg.send()
chainlit.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # FILL OUT YOUR CHAINLIT MD HERE WITH A DESCRIPTION OF YOUR APPLICATION
requirements.txt ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiofiles==23.2.1
2
+ aiohappyeyeballs==2.4.3
3
+ aiohttp==3.10.8
4
+ aiosignal==1.3.1
5
+ annotated-types==0.7.0
6
+ anyio==3.7.1
7
+ async-timeout==4.0.3
8
+ asyncer==0.0.2
9
+ attrs==24.2.0
10
+ bidict==0.23.1
11
+ certifi==2024.8.30
12
+ chainlit==0.7.700
13
+ charset-normalizer==3.3.2
14
+ click==8.1.7
15
+ dataclasses-json==0.5.14
16
+ Deprecated==1.2.14
17
+ distro==1.9.0
18
+ exceptiongroup==1.2.2
19
+ faiss-cpu==1.8.0.post1
20
+ fastapi==0.100.1
21
+ fastapi-socketio==0.0.10
22
+ filelock==3.16.1
23
+ filetype==1.2.0
24
+ frozenlist==1.4.1
25
+ fsspec==2024.9.0
26
+ googleapis-common-protos==1.65.0
27
+ greenlet==3.1.1
28
+ grpcio==1.66.2
29
+ grpcio-tools==1.62.3
30
+ h11==0.14.0
31
+ h2==4.1.0
32
+ hpack==4.0.0
33
+ httpcore==0.17.3
34
+ httpx==0.24.1
35
+ huggingface-hub==0.25.1
36
+ hyperframe==6.0.1
37
+ idna==3.10
38
+ importlib_metadata==8.4.0
39
+ Jinja2==3.1.4
40
+ jiter==0.5.0
41
+ joblib==1.4.2
42
+ jsonpatch==1.33
43
+ jsonpointer==3.0.0
44
+ langchain==0.3.0
45
+ langchain-community==0.3.0
46
+ langchain-core==0.3.1
47
+ langchain-huggingface==0.1.0
48
+ langchain-openai==0.2.0
49
+ langchain-qdrant==0.1.4
50
+ langchain-text-splitters==0.3.0
51
+ langsmith==0.1.121
52
+ Lazify==0.4.0
53
+ MarkupSafe==2.1.5
54
+ marshmallow==3.22.0
55
+ mpmath==1.3.0
56
+ multidict==6.1.0
57
+ mypy-extensions==1.0.0
58
+ nest-asyncio==1.6.0
59
+ networkx==3.2.1
60
+ numpy==1.26.4
61
+ nvidia-cublas-cu12==12.1.3.1
62
+ nvidia-cuda-cupti-cu12==12.1.105
63
+ nvidia-cuda-nvrtc-cu12==12.1.105
64
+ nvidia-cuda-runtime-cu12==12.1.105
65
+ nvidia-cudnn-cu12==9.1.0.70
66
+ nvidia-cufft-cu12==11.0.2.54
67
+ nvidia-curand-cu12==10.3.2.106
68
+ nvidia-cusolver-cu12==11.4.5.107
69
+ nvidia-cusparse-cu12==12.1.0.106
70
+ nvidia-nccl-cu12==2.20.5
71
+ nvidia-nvjitlink-cu12==12.6.77
72
+ nvidia-nvtx-cu12==12.1.105
73
+ openai==1.51.0
74
+ opentelemetry-api==1.27.0
75
+ opentelemetry-exporter-otlp==1.27.0
76
+ opentelemetry-exporter-otlp-proto-common==1.27.0
77
+ opentelemetry-exporter-otlp-proto-grpc==1.27.0
78
+ opentelemetry-exporter-otlp-proto-http==1.27.0
79
+ opentelemetry-instrumentation==0.48b0
80
+ opentelemetry-proto==1.27.0
81
+ opentelemetry-sdk==1.27.0
82
+ opentelemetry-semantic-conventions==0.48b0
83
+ orjson==3.10.7
84
+ packaging==23.2
85
+ pillow==10.4.0
86
+ portalocker==2.10.1
87
+ protobuf==4.25.5
88
+ pydantic==2.9.2
89
+ pydantic-settings==2.5.2
90
+ pydantic_core==2.23.4
91
+ PyJWT==2.9.0
92
+ PyMuPDF==1.24.10
93
+ PyMuPDFb==1.24.10
94
+ python-dotenv==1.0.1
95
+ python-engineio==4.9.1
96
+ python-graphql-client==0.4.3
97
+ python-multipart==0.0.6
98
+ python-socketio==5.11.4
99
+ PyYAML==6.0.2
100
+ qdrant-client==1.11.2
101
+ regex==2024.9.11
102
+ requests==2.32.3
103
+ safetensors==0.4.5
104
+ scikit-learn==1.5.2
105
+ scipy==1.13.1
106
+ sentence-transformers==3.1.1
107
+ simple-websocket==1.0.0
108
+ sniffio==1.3.1
109
+ SQLAlchemy==2.0.35
110
+ starlette==0.27.0
111
+ sympy==1.13.3
112
+ syncer==2.0.3
113
+ tenacity==8.5.0
114
+ threadpoolctl==3.5.0
115
+ tiktoken==0.7.0
116
+ tokenizers==0.20.0
117
+ tomli==2.0.1
118
+ torch==2.4.1
119
+ tqdm==4.66.5
120
+ transformers==4.45.1
121
+ triton==3.0.0
122
+ typing-inspect==0.9.0
123
+ typing_extensions==4.12.2
124
+ uptrace==1.26.0
125
+ urllib3==2.2.3
126
+ uvicorn==0.23.2
127
+ watchfiles==0.20.0
128
+ websockets==13.1
129
+ wrapt==1.16.0
130
+ wsproto==1.2.0
131
+ yarl==1.13.1
132
+ zipp==3.20.2