Spaces:
Runtime error
Runtime error
Update fn.py
Browse files
fn.py
CHANGED
@@ -1,36 +1,48 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
model = None
|
4 |
model_size = None
|
|
|
5 |
|
6 |
def load_model(_model_size):
|
7 |
-
global model_size, model
|
8 |
|
9 |
if _model_size and model_size != _model_size:
|
10 |
model_size = _model_size
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def speech_to_text(audio_file, _model_size = None):
|
18 |
-
global model_size, model
|
19 |
|
20 |
load_model(_model_size)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
language='ja',
|
25 |
-
beam_size=5,
|
26 |
-
vad_filter=True,
|
27 |
-
without_timestamps=False,
|
28 |
-
)
|
29 |
-
|
30 |
-
text_only = ''
|
31 |
-
text_with_timestamps = ''
|
32 |
-
for segment in segments:
|
33 |
-
text_only += f"{segment.text}\n"
|
34 |
-
text_with_timestamps += f"{segment.start:.2f}\t{segment.end:.2f}\t{segment.text}\n"
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
4 |
+
from datasets import load_dataset
|
5 |
+
|
6 |
+
# config
|
7 |
+
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
8 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
9 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
model = None
|
12 |
model_size = None
|
13 |
+
pipe = None
|
14 |
|
15 |
def load_model(_model_size):
|
16 |
+
global model_size, model, pipe
|
17 |
|
18 |
if _model_size and model_size != _model_size:
|
19 |
model_size = _model_size
|
20 |
|
21 |
+
# load model
|
22 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
23 |
+
model.to(device)
|
24 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
25 |
+
pipe = pipeline(
|
26 |
+
"automatic-speech-recognition",
|
27 |
+
model=model,
|
28 |
+
tokenizer=processor.tokenizer,
|
29 |
+
feature_extractor=processor.feature_extractor,
|
30 |
+
max_new_tokens=128,
|
31 |
+
torch_dtype=torch_dtype,
|
32 |
+
device=device,
|
33 |
+
)
|
34 |
|
35 |
def speech_to_text(audio_file, _model_size = None):
|
36 |
+
global model_size, model, pipe
|
37 |
|
38 |
load_model(_model_size)
|
39 |
|
40 |
+
# run inference
|
41 |
+
result = pipe(audio_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
try:
|
44 |
+
res = json.dumps(result)
|
45 |
+
except:
|
46 |
+
res = ''
|
47 |
+
|
48 |
+
return result["text"], res
|