Spaces:
Runtime error
Runtime error
import json | |
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
from datasets import load_dataset | |
# config | |
model_id = "kotoba-tech/kotoba-whisper-v1.0" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
model = None | |
pipe = None | |
initial_prompt = None | |
def load_model(): | |
global model, pipe | |
# load model | |
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
def set_prompt(prompt): | |
global initial_prompt | |
initial_prompt = prompt | |
def speech_to_text(audio_file, _model_size = None): | |
global model, pipe, initial_prompt | |
if not model: | |
load_model() | |
# run inference | |
generate_kwargs = {} | |
if initial_prompt: | |
generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(initial_prompt, return_tensors="pt").to(device) | |
result = pipe(audio_file, generate_kwargs=generate_kwargs) | |
try: | |
res = json.dumps(result) | |
except: | |
res = '' | |
return result["text"], res | |