Spaces:
Runtime error
Runtime error
import os | |
import logging | |
import asyncio | |
import tiktoken | |
from typing import List, Dict, Any, Optional | |
from pathlib import Path | |
import chromadb | |
from chromadb.config import Settings | |
from sentence_transformers import SentenceTransformer | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.schema import Document | |
from langchain_groq import ChatGroq | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.runnables import RunnablePassthrough | |
from datasets import load_dataset | |
from config import * | |
logger = logging.getLogger(__name__) | |
class RAGSystem: | |
"""Main RAG system class for the Law Chatbot""" | |
def __init__(self): | |
self.embedding_model = None | |
self.vector_db = None | |
self.llm = None | |
self.text_splitter = None | |
self.collection = None | |
self.is_initialized = False | |
self.tokenizer = None | |
async def initialize(self): | |
"""Initialize all components of the RAG system""" | |
try: | |
logger.info("Initializing RAG system components...") | |
# Check required environment variables | |
if not HF_TOKEN: | |
raise ValueError(ERROR_MESSAGES["no_hf_token"]) | |
if not GROQ_API_KEY: | |
raise ValueError(ERROR_MESSAGES["no_groq_key"]) | |
# Initialize components | |
await self._init_embeddings() | |
await self._init_vector_db() | |
await self._init_llm() | |
await self._init_text_splitter() | |
await self._init_tokenizer() | |
# Load and index documents if needed | |
if not self._is_database_populated(): | |
await self._load_and_index_documents() | |
self.is_initialized = True | |
logger.info("RAG system initialized successfully") | |
except Exception as e: | |
logger.error(f"Failed to initialize RAG system: {e}") | |
raise | |
async def _init_embeddings(self): | |
"""Initialize the embedding model""" | |
try: | |
logger.info(f"Loading embedding model: {EMBEDDING_MODEL}") | |
self.embedding_model = SentenceTransformer(EMBEDDING_MODEL) | |
logger.info("Embedding model loaded successfully") | |
except Exception as e: | |
logger.error(f"Failed to load embedding model: {e}") | |
raise ValueError(ERROR_MESSAGES["embedding_failed"].format(str(e))) | |
async def _init_vector_db(self): | |
"""Initialize ChromaDB vector database""" | |
try: | |
logger.info("Initializing ChromaDB...") | |
# Create persistent directory | |
Path(CHROMA_PERSIST_DIR).mkdir(exist_ok=True) | |
# Initialize ChromaDB client | |
self.vector_db = chromadb.PersistentClient( | |
path=CHROMA_PERSIST_DIR, | |
settings=Settings( | |
anonymized_telemetry=False, | |
allow_reset=True | |
) | |
) | |
# Get or create collection | |
self.collection = self.vector_db.get_or_create_collection( | |
name=CHROMA_COLLECTION_NAME, | |
metadata={"hnsw:space": "cosine"} | |
) | |
logger.info("ChromaDB initialized successfully") | |
except Exception as e: | |
logger.error(f"Failed to initialize ChromaDB: {e}") | |
raise ValueError(ERROR_MESSAGES["vector_db_failed"].format(str(e))) | |
async def _init_llm(self): | |
"""Initialize the Groq LLM""" | |
try: | |
logger.info(f"Initializing Groq LLM: {GROQ_MODEL}") | |
self.llm = ChatGroq( | |
groq_api_key=GROQ_API_KEY, | |
model_name=GROQ_MODEL, | |
temperature=TEMPERATURE, | |
max_tokens=MAX_TOKENS | |
) | |
logger.info("Groq LLM initialized successfully") | |
except Exception as e: | |
logger.error(f"Failed to initialize Groq LLM: {e}") | |
raise ValueError(ERROR_MESSAGES["llm_failed"].format(str(e))) | |
async def _init_text_splitter(self): | |
"""Initialize the text splitter""" | |
self.text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=CHUNK_SIZE, | |
chunk_overlap=CHUNK_OVERLAP, | |
length_function=len, | |
separators=["\n\n", "\n", " ", ""] | |
) | |
async def _init_tokenizer(self): | |
"""Initialize tokenizer for token counting""" | |
try: | |
# Use cl100k_base encoding which is compatible with most modern models | |
self.tokenizer = tiktoken.get_encoding("cl100k_base") | |
logger.info("Tokenizer initialized successfully") | |
except Exception as e: | |
logger.warning(f"Failed to initialize tokenizer: {e}") | |
self.tokenizer = None | |
def _is_database_populated(self) -> bool: | |
"""Check if the vector database has documents""" | |
try: | |
count = self.collection.count() | |
logger.info(f"Vector database contains {count} documents") | |
return count > 0 | |
except Exception as e: | |
logger.warning(f"Could not check database count: {e}") | |
return False | |
async def _load_and_index_documents(self): | |
"""Load Law-StackExchange dataset and index into vector database""" | |
try: | |
logger.info("Loading Law-StackExchange dataset...") | |
# Load dataset | |
dataset = load_dataset(HF_DATASET_NAME, split=DATASET_SPLIT) | |
logger.info(f"Loaded {len(dataset)} documents from dataset") | |
# Process documents in batches | |
batch_size = 100 | |
total_documents = len(dataset) | |
for i in range(0, total_documents, batch_size): | |
# Use select() method for proper batch slicing | |
batch = dataset.select(range(i, min(i + batch_size, total_documents))) | |
await self._process_batch(batch, i, total_documents) | |
logger.info("Document indexing completed successfully") | |
except Exception as e: | |
logger.error(f"Failed to load and index documents: {e}") | |
raise | |
async def _process_batch(self, batch, start_idx: int, total: int): | |
"""Process a batch of documents""" | |
try: | |
documents = [] | |
metadatas = [] | |
ids = [] | |
for idx, item in enumerate(batch): | |
# Extract relevant fields from the dataset | |
content = self._extract_content(item) | |
if not content: | |
continue | |
# Split content into chunks | |
chunks = self.text_splitter.split_text(content) | |
for chunk_idx, chunk in enumerate(chunks): | |
doc_id = f"doc_{start_idx + idx}_{chunk_idx}" | |
documents.append(chunk) | |
metadatas.append({ | |
"source": "mental_health_counseling_conversations", | |
"original_index": start_idx + idx, | |
"chunk_index": chunk_idx, | |
"dataset": HF_DATASET_NAME, | |
"content_length": len(chunk) | |
}) | |
ids.append(doc_id) | |
# Add documents to vector database | |
if documents: | |
self.collection.add( | |
documents=documents, | |
metadatas=metadatas, | |
ids=ids | |
) | |
logger.info(f"Processed batch {start_idx//100 + 1}/{(total-1)//100 + 1}") | |
except Exception as e: | |
logger.error(f"Error processing batch starting at {start_idx}: {e}") | |
def _extract_content(self, item: Dict[str, Any]) -> Optional[str]: | |
"""Extract relevant content from dataset item""" | |
try: | |
# Try to extract question and answer content | |
content_parts = [] | |
if "Context" in item and item["Context"]: | |
content_parts.append(f"Question Body: {item['Context']}") | |
# Extract answers (multiple answers possible) | |
if "Response" in item and isinstance(item["Response"], list): | |
for i, answer in enumerate(item["answers"]): | |
if isinstance(answer, dict) and "body" in answer: | |
content_parts.append(f"Answer {i+1}: {answer['body']}") | |
# Extract tags for context | |
if "tags" in item and isinstance(item["tags"], list): | |
tags_str = ", ".join(item["tags"]) | |
if tags_str: | |
content_parts.append(f"Tags: {tags_str}") | |
if not content_parts: | |
return None | |
return "\n\n".join(content_parts) | |
except Exception as e: | |
logger.warning(f"Could not extract content from item: {e}") | |
return None | |
async def search_documents(self, query: str, limit: int = TOP_K_RETRIEVAL) -> List[Dict[str, Any]]: | |
"""Search for relevant documents""" | |
try: | |
# Generate query embedding | |
query_embedding = self.embedding_model.encode(query).tolist() | |
# Search in vector database | |
results = self.collection.query( | |
query_embeddings=[query_embedding], | |
n_results=limit, | |
include=["documents", "metadatas", "distances"] | |
) | |
# Format results | |
formatted_results = [] | |
for i in range(len(results["documents"][0])): | |
formatted_results.append({ | |
"content": results["documents"][0][i], | |
"metadata": results["metadatas"][0][i], | |
"distance": results["distances"][0][i], | |
"relevance_score": 1 - results["distances"][0][i] # Convert distance to similarity | |
}) | |
return formatted_results | |
except Exception as e: | |
logger.error(f"Error searching documents: {e}") | |
raise | |
async def get_response(self, question: str, context_length: int = 5) -> Dict[str, Any]: | |
"""Get RAG response for a question""" | |
try: | |
# Check if it's a conversational query | |
if self._is_conversational_query(question): | |
conversational_answer = self._generate_conversational_response(question) | |
return { | |
"answer": conversational_answer, | |
"sources": [], | |
"confidence": 1.0 # High confidence for conversational responses | |
} | |
# Search for relevant documents with multiple strategies | |
search_results = await self._enhanced_search(question, context_length) | |
if not search_results: | |
# Try with broader search terms | |
broader_results = await self._broader_search(question, context_length) | |
if broader_results: | |
search_results = broader_results | |
logger.info(f"Found {len(search_results)} results with broader search") | |
# Filter results for relevance | |
if search_results: | |
search_results = self._filter_relevant_results(search_results, question) | |
if not search_results: | |
# No relevant docs found: generate a short, supportive answer using LLM with empty context | |
response = await self._generate_llm_response(question, context="") | |
return { | |
"answer": response, | |
"sources": [], | |
"confidence": 0.5 # Lower confidence since no docs | |
} | |
# Prepare context for LLM | |
context = self._prepare_context(search_results) | |
# Generate response using LLM | |
response = await self._generate_llm_response(question, context) | |
# Calculate confidence based on search results | |
confidence = self._calculate_confidence(search_results) | |
return { | |
"answer": response, | |
"sources": search_results, | |
"confidence": confidence | |
} | |
except Exception as e: | |
logger.error(f"Error generating response: {e}") | |
raise | |
def _count_tokens(self, text: str) -> int: | |
"""Count tokens in text using the tokenizer""" | |
if not self.tokenizer: | |
# Fallback: rough estimation (1 token ≈ 4 characters) | |
return len(text) // 4 | |
return len(self.tokenizer.encode(text)) | |
def _truncate_context(self, context: str, max_tokens: int = None) -> str: | |
"""Truncate context to fit within token limits""" | |
if not context: | |
return context | |
if max_tokens is None: | |
max_tokens = MAX_CONTEXT_TOKENS | |
current_tokens = self._count_tokens(context) | |
if current_tokens <= max_tokens: | |
return context | |
logger.info(f"Context too large ({current_tokens} tokens), truncating to {max_tokens} tokens") | |
# Split context into sentences and truncate | |
sentences = context.split('. ') | |
truncated_context = "" | |
current_length = 0 | |
for sentence in sentences: | |
sentence_tokens = self._count_tokens(sentence + ". ") | |
if current_length + sentence_tokens <= max_tokens: | |
truncated_context += sentence + ". " | |
current_length += sentence_tokens | |
else: | |
break | |
if not truncated_context: | |
# If even one sentence is too long, truncate by characters | |
max_chars = max_tokens * 4 # Rough estimation | |
truncated_context = context[:max_chars] + "..." | |
logger.info(f"Truncated context from {current_tokens} to {self._count_tokens(truncated_context)} tokens") | |
return truncated_context.strip() | |
def _prepare_context(self, search_results: List[Dict[str, Any]]) -> str: | |
"""Prepare context string for LLM with token limit enforcement""" | |
if not search_results: | |
return "" | |
context_parts = [] | |
# Start with fewer sources and gradually add more if token budget allows | |
max_sources = min(len(search_results), MAX_SOURCES) | |
current_tokens = 0 | |
added_sources = 0 | |
logger.info(f"Preparing context from {len(search_results)} search results, limiting to {max_sources} sources") | |
for i, result in enumerate(search_results[:max_sources]): | |
source_content = f"Source {i+1}:\n{result['content']}\n" | |
source_tokens = self._count_tokens(source_content) | |
logger.info(f"Source {i+1}: {source_tokens} tokens") | |
# Check if adding this source would exceed token limit | |
if current_tokens + source_tokens <= MAX_CONTEXT_TOKENS: | |
context_parts.append(source_content) | |
current_tokens += source_tokens | |
added_sources += 1 | |
logger.info(f"Added source {i+1}, total tokens now: {current_tokens}") | |
else: | |
logger.info(f"Stopping at source {i+1}, would exceed token limit ({current_tokens} + {source_tokens} > {MAX_CONTEXT_TOKENS})") | |
break | |
full_context = "\n".join(context_parts) | |
logger.info(f"Final context: {added_sources} sources, {current_tokens} tokens") | |
# Final safety check - truncate if still too long | |
if current_tokens > MAX_CONTEXT_TOKENS: | |
logger.warning(f"Context still too long ({current_tokens} tokens), truncating") | |
full_context = self._truncate_context(full_context, MAX_CONTEXT_TOKENS) | |
return full_context | |
async def _generate_llm_response(self, question: str, context: str) -> str: | |
"""Generate response using Groq LLM with token management""" | |
try: | |
# Detect language of the question | |
import re | |
from langdetect import detect, LangDetectException | |
try: | |
user_language = detect(question) | |
except LangDetectException: | |
user_language = "en" | |
# Map language code to readable name (for prompt) | |
lang_map = {"en": "English", "hi": "Hindi"} | |
language_name = lang_map.get(user_language, "the user's language") | |
# Updated prompt template | |
prompt_template = f""" | |
You are a compassionate mental health supporter with training in anxiety, depression, trauma, and coping strategies. | |
Use the following evidence-based psychological information to address the user’s concerns with care and accuracy. | |
Therapeutic Context: | |
{{context}} | |
User’s Concern: {{question}} | |
Guidelines for Response: | |
- Reply in the same language as the user's question. If the question is in Hindi, answer in Hindi. If in another language, answer in that language. | |
- Strictly limit your answer to 2 sentences. Do not elaborate or add extra information. Do not repeat yourself. | |
- Keep your answer conversational and natural, as if chatting with a friend. | |
- Provide empathetic, evidence-based support rooted in the context (e.g., CBT, DBT, or mindfulness principles). | |
- If context is insufficient, acknowledge limits and offer general wellness strategies (e.g., grounding techniques, self-care tips). | |
- Cite sources when referencing specific therapies or studies (e.g., "APA guidelines suggest..."). | |
- For symptom-related questions, differentiate between mild, moderate, and severe cases (e.g., situational stress vs. clinical anxiety). | |
- Use clear, stigma-free language while maintaining clinical accuracy. | |
- When discussing crises, emphasize jurisdictional resources (e.g., "Laws/programs vary by location, but here’s how to find local help..."). | |
- Prioritize validation and education—not just information. | |
- Always reply in {language_name}. | |
Example Response: | |
"I hear you’re feeling overwhelmed. Based on [Context Source], deep breathing exercises can help calm acute anxiety. However, if these feelings persist for weeks, it might reflect generalized anxiety disorder (GAD). Always consult a licensed therapist for personalized care. Would you like crisis hotline numbers or a step-by-step grounding technique?" | |
""" | |
# Estimate total tokens | |
estimated_prompt_tokens = self._count_tokens(prompt_template.format(context=context, question=question)) | |
logger.info(f"Estimated prompt tokens: {estimated_prompt_tokens}") | |
# If still too large, truncate context further | |
if estimated_prompt_tokens > MAX_PROMPT_TOKENS: # Use config value | |
logger.warning(f"Prompt too large ({estimated_prompt_tokens} tokens), truncating context further") | |
max_context_tokens = MAX_CONTEXT_TOKENS // 2 # More aggressive truncation | |
context = self._truncate_context(context, max_context_tokens) | |
estimated_prompt_tokens = self._count_tokens(prompt_template.format(context=context, question=question)) | |
logger.info(f"After truncation: {estimated_prompt_tokens} tokens") | |
# Create enhanced prompt template for legal questions | |
prompt = ChatPromptTemplate.from_template(prompt_template) | |
# Create chain | |
chain = prompt | self.llm | StrOutputParser() | |
# Generate response | |
response = await chain.ainvoke({ | |
"question": question, | |
"context": context | |
}) | |
# Post-process: Truncate to first 2 sentences | |
sentences = re.split(r'(?<=[.!?])\s+', response.strip()) | |
short_response = ' '.join(sentences[:2]).strip() | |
return short_response | |
except Exception as e: | |
logger.error(f"Error generating LLM response: {e}") | |
# Check if it's a token limit error | |
if "413" in str(e) or "too large" in str(e).lower() or "tokens" in str(e).lower(): | |
logger.error("Token limit exceeded, providing fallback response") | |
return self._generate_fallback_response(question) | |
# Provide fallback response with general legal information | |
return self._generate_fallback_response(question) | |
def _generate_fallback_response(self, question: str) -> str: | |
"""Generate a fallback response when LLM fails""" | |
if "drunk driving" in question.lower() or "dui" in question.lower(): | |
return """I apologize, but I encountered an error while generating a response. However, I can provide some general legal context about drunk driving: | |
Drunk driving causing accidents is typically punished more severely than just drunk driving because it involves actual harm or damage to others, which increases the criminal liability and potential penalties. For specific legal advice, please consult with a qualified attorney in your jurisdiction.""" | |
else: | |
return """I apologize, but I encountered an error while generating a response. | |
For legal questions, it's important to consult with a qualified attorney who can provide specific advice based on your jurisdiction and circumstances. Laws vary significantly between different states and countries. | |
If you have a specific legal question, please try rephrasing it or contact a local legal professional for assistance.""" | |
def _calculate_confidence(self, search_results: List[Dict[str, Any]]) -> float: | |
"""Calculate confidence score based on search results""" | |
if not search_results: | |
return 0.0 | |
# Calculate average relevance score | |
avg_relevance = sum(result["relevance_score"] for result in search_results) / len(search_results) | |
# Normalize to 0-1 range | |
confidence = min(1.0, avg_relevance * 2) # Scale up relevance scores | |
return round(confidence, 2) | |
async def get_stats(self) -> Dict[str, Any]: | |
"""Get system statistics""" | |
try: | |
if not self.collection: | |
return {"error": "Collection not initialized"} | |
count = self.collection.count() | |
return { | |
"total_documents": count, | |
"embedding_model": EMBEDDING_MODEL, | |
"llm_model": GROQ_MODEL, | |
"vector_db_path": CHROMA_PERSIST_DIR, | |
"chunk_size": CHUNK_SIZE, | |
"chunk_overlap": CHUNK_OVERLAP, | |
"is_initialized": self.is_initialized | |
} | |
except Exception as e: | |
logger.error(f"Error getting stats: {e}") | |
return {"error": str(e)} | |
async def reindex(self): | |
"""Reindex all documents""" | |
try: | |
logger.info("Starting reindexing process...") | |
# Clear existing collection | |
self.vector_db.delete_collection(CHROMA_COLLECTION_NAME) | |
self.collection = self.vector_db.create_collection( | |
name=CHROMA_COLLECTION_NAME, | |
metadata={"hnsw:space": "cosine"} | |
) | |
# Reload and index documents | |
await self._load_and_index_documents() | |
logger.info("Reindexing completed successfully") | |
except Exception as e: | |
logger.error(f"Error during reindexing: {e}") | |
raise | |
def is_ready(self) -> bool: | |
"""Check if the RAG system is ready""" | |
return ( | |
self.is_initialized and | |
self.embedding_model is not None and | |
self.vector_db is not None and | |
self.llm is not None and | |
self.collection is not None | |
) | |
async def _enhanced_search(self, question: str, context_length: int) -> List[Dict[str, Any]]: | |
"""Enhanced search with multiple strategies and context management""" | |
try: | |
# Limit context_length to prevent token overflow | |
max_context_length = min(context_length, MAX_SOURCES) | |
logger.info(f"Searching with context_length: {max_context_length}") | |
# Extract legal concepts for better search | |
legal_concepts = self._extract_legal_concepts(question) | |
# Generate search variations | |
search_variations = self._generate_search_variations(question) | |
all_results = [] | |
# Search with original question | |
try: | |
results = await self.search_documents(question, limit=max_context_length) | |
if results: | |
all_results.extend(results) | |
logger.info(f"Found {len(results)} results with original question") | |
except Exception as e: | |
logger.warning(f"Search with original question failed: {e}") | |
# Search with legal concepts | |
for concept in legal_concepts[:MAX_LEGAL_CONCEPTS]: | |
try: | |
if len(all_results) >= max_context_length * 2: # Don't exceed double the limit | |
break | |
results = await self.search_documents(concept, limit=max_context_length) | |
if results: | |
# Filter out duplicates | |
new_results = [r for r in results if not any( | |
existing['id'] == r['id'] for existing in all_results | |
)] | |
all_results.extend(new_results[:max_context_length]) | |
logger.info(f"Found {len(new_results)} additional results with concept: {concept}") | |
except Exception as e: | |
logger.warning(f"Search with concept '{concept}' failed: {e}") | |
# Search with variations if we still need more results | |
if len(all_results) < max_context_length: | |
for variation in search_variations[:MAX_SEARCH_VARIATIONS]: | |
try: | |
if len(all_results) >= max_context_length: | |
break | |
results = await self.search_documents(variation, limit=max_context_length) | |
if results: | |
# Filter out duplicates | |
new_results = [r for r in results if not any( | |
existing['id'] == r['id'] for existing in all_results | |
)] | |
all_results.extend(new_results[:max_context_length - len(all_results)]) | |
logger.info(f"Found {len(new_results)} additional results with variation: {variation}") | |
except Exception as e: | |
logger.warning(f"Search with variation '{variation}' failed: {e}") | |
# Sort by relevance and limit final results | |
if all_results: | |
# Sort by score if available, otherwise keep order | |
all_results.sort(key=lambda x: x.get('score', 0), reverse=True) | |
final_results = all_results[:max_context_length] | |
logger.info(f"Final search results: {len(final_results)} sources") | |
return final_results | |
return [] | |
except Exception as e: | |
logger.error(f"Enhanced search failed: {e}") | |
return [] | |
async def _broader_search(self, question: str, context_length: int) -> List[Dict[str, Any]]: | |
"""Broader search with simplified terms and context management""" | |
try: | |
# Limit context_length to prevent token overflow | |
max_context_length = min(context_length, 3) # More conservative limit for broader search | |
logger.info(f"Broader search with context_length: {max_context_length}") | |
# Simplify the question for broader search | |
simplified_terms = self._simplify_search_terms(question) | |
all_results = [] | |
for term in simplified_terms[:2]: # Limit to 2 simplified terms | |
try: | |
if len(all_results) >= max_context_length: | |
break | |
results = await self.search_documents(term, limit=max_context_length) | |
if results: | |
# Filter out duplicates | |
new_results = [r for r in results if not any( | |
existing['id'] == r['id'] for existing in all_results | |
)] | |
all_results.extend(new_results[:max_context_length - len(all_results)]) | |
logger.info(f"Found {len(new_results)} results with simplified term: {term}") | |
except Exception as e: | |
logger.warning(f"Broader search with term '{term}' failed: {e}") | |
# Sort by relevance and limit final results | |
if all_results: | |
all_results.sort(key=lambda x: x.get('score', 0), reverse=True) | |
final_results = all_results[:max_context_length] | |
logger.info(f"Final broader search results: {len(final_results)} sources") | |
return final_results | |
return [] | |
except Exception as e: | |
logger.error(f"Broader search failed: {e}") | |
return [] | |
def _simplify_search_terms(self, question: str) -> List[str]: | |
question_lower = question.lower() | |
# Extract key mental health concepts | |
mental_health_keywords = [] | |
if "anxiety" in question_lower or "panic" in question_lower: | |
mental_health_keywords.extend(["anxiety", "panic", "stress", "mental health"]) | |
if "depression" in question_lower or "sad" in question_lower: | |
mental_health_keywords.extend(["depression", "mood", "mental health"]) | |
if "trauma" in question_lower or "ptsd" in question_lower: | |
mental_health_keywords.extend(["trauma", "PTSD", "coping", "mental health"]) | |
if "therapy" in question_lower or "counseling" in question_lower: | |
mental_health_keywords.extend(["therapy", "counseling", "treatment"]) | |
if "stress" in question_lower or "overwhelmed" in question_lower: | |
mental_health_keywords.extend(["stress", "coping", "mental health"]) | |
# Emotional state indicators | |
emotional_terms = ["feel", "feeling", "experience", "struggling"] | |
if any(term in question_lower for term in emotional_terms): | |
mental_health_keywords.extend(["emotions", "feelings", "mental health"]) | |
# If no specific keywords found, use general terms | |
if not mental_health_keywords: | |
mental_health_keywords = ["mental health", "well-being", "emotional support"] | |
return list(set(mental_health_keywords)) # Remove duplicates | |
def _generate_search_variations(self, question: str) -> List[str]: | |
variations = [question] | |
question_lower = question.lower() | |
# Anxiety-specific variations | |
if "anxiety" in question_lower or "panic" in question_lower: | |
variations.extend([ | |
"coping strategies for anxiety", | |
"how to calm anxiety attacks", | |
"difference between anxiety and panic attacks", | |
"best therapy approaches for anxiety", | |
"natural remedies for anxiety relief", | |
"when to seek help for anxiety", | |
"anxiety self-help techniques" | |
]) | |
# Depression-specific variations | |
elif "depression" in question_lower or "sad" in question_lower: | |
variations.extend([ | |
"signs of clinical depression", | |
"self-care for depression", | |
"therapy options for depression", | |
"how to support someone with depression", | |
"difference between sadness and depression", | |
"depression coping skills", | |
"when depression requires medication" | |
]) | |
# Trauma-specific variations | |
elif "trauma" in question_lower or "ptsd" in question_lower: | |
variations.extend([ | |
"healing from trauma strategies", | |
"PTSD symptoms and treatment", | |
"trauma-focused therapy approaches", | |
"coping with flashbacks", | |
"how trauma affects the brain", | |
"self-help for PTSD", | |
"when to seek trauma therapy" | |
]) | |
# General mental health variations | |
variations.extend([ | |
f"mental health resources for {question}", | |
f"coping strategies {question}", | |
f"therapy approaches {question}", | |
question.replace("?", "").strip() + " psychological support", | |
question.replace("?", "").strip() + " emotional help", | |
"how to deal with " + question.replace("?", "").strip(), | |
"best ways to manage " + question.replace("?", "").strip() | |
]) | |
return list(set(variations))[:8] # Remove duplicates and limit to 8 | |
def _extract_legal_concepts(self, question: str) -> List[str]: | |
mental_health_concepts = [] | |
# Common mental health terms organized by category | |
mental_health_terms = [ | |
# Conditions | |
"anxiety", "depression", "ptsd", "trauma", "ocd", | |
"bipolar", "adhd", "autism", "eating disorder", | |
# Symptoms | |
"panic", "sadness", "flashback", "trigger", | |
"mood swing", "dissociation", "suicidal", | |
# Treatments | |
"therapy", "counseling", "medication", "ssri", | |
"cbt", "dbt", "exposure therapy", | |
# Emotional states | |
"stress", "overwhelmed", "burnout", "grief", | |
"loneliness", "anger", "fear", | |
# Coping/help | |
"coping", "self-care", "support group", | |
"hotline", "crisis", "intervention" | |
] | |
question_lower = question.lower() | |
for term in mental_health_terms: | |
if term in question_lower: | |
mental_health_concepts.append(term) | |
# Handle common synonyms and related phrases | |
synonyms = { | |
"sad": "depression", | |
"nervous": "anxiety", | |
"scared": "anxiety", | |
"triggered": "trigger", | |
"ptsd": "trauma", | |
"mental illness": "mental health", | |
"shrinks": "therapy", | |
"mental breakdown": "crisis" | |
} | |
# Check for synonyms | |
for term, concept in synonyms.items(): | |
if term in question_lower and concept not in mental_health_concepts: | |
mental_health_concepts.append(concept) | |
return mental_health_concepts | |
# def _is_legal_query(self, question: str) -> bool: | |
def _is_legal_query(self, question: str) -> bool: | |
question_lower = question.lower().strip() | |
# Mental health keywords | |
mental_health_keywords = [ | |
# Conditions | |
"anxiety", "depression", "ptsd", "trauma", "ocd", "bipolar", "adhd", | |
"autism", "eating disorder", "panic", "stress", "burnout", "grief", | |
# Symptoms | |
"sad", "hopeless", "overwhelmed", "triggered", "flashback", | |
"dissociation", "suicidal", "self-harm", "numb", "irritable", | |
# Treatments | |
"therapy", "counseling", "cbt", "dbt", "medication", "ssri", | |
"antidepressant", "treatment", "intervention", | |
# Emotional states | |
"feel", "feeling", "emotion", "mental state", "mood", | |
"emotional", "psychology", | |
# Coping/help | |
"cope", "coping", "self-care", "support", "help", "resources", | |
"hotline", "crisis", "well-being", "mental health", "mental illness", | |
"therapist", "psychologist", "psychiatrist", "counselor" | |
] | |
# Check for mental health keywords | |
for keyword in mental_health_keywords: | |
if keyword in question_lower: | |
return True | |
# Check for question words that often indicate mental health queries | |
question_words = ["how", "why", "what", "when", "should", "can", "does"] | |
has_question_word = any(question_lower.startswith(word) for word in question_words) | |
# Check for mental health context indicators | |
mental_health_context = [ | |
"i feel", "i'm feeling", "i am feeling", "struggling with", "dealing with", | |
"coping with", "mental state", "emotional state", "my mood", "my anxiety", | |
"my depression", "my trauma", "my stress", "help me with", "support for", | |
"resources for", "ways to manage", "how to handle", "should i seek", | |
"do i need", "am i", "is this normal", "signs of", "symptoms of", | |
"crisis", "urgent", "emergency", "can't cope", "can't handle" | |
] | |
has_mental_health_context = any(context in question_lower for context in mental_health_context) | |
# More permissive check for emotional distress indicators | |
if has_question_word: | |
# Emotional distress indicators | |
distress_indicators = [ | |
"overwhelmed", "hopeless", "alone", "stuck", "lost", "empty", | |
"numb", "crying", "scared", "fear", "worry", "panic", "stress", | |
"can't sleep", "appetite", "energy", "motivation", "concentrate", | |
"suicidal", "self-harm", "harm myself", "end it all" | |
] | |
if any(indicator in question_lower for indicator in distress_indicators): | |
return True | |
# Check for emotional expression patterns | |
emotion_words = ["sad", "anxious", "depressed", "angry", "stressed", "nervous"] | |
has_emotion_word = any(word in question_lower for word in emotion_words) | |
# Final decision logic | |
return ( | |
has_question_word and | |
(has_mental_health_context or has_emotion_word or any(keyword in question_lower for keyword in mental_health_keywords)) | |
) | |
def _is_conversational_query(self, question: str) -> bool: | |
"""Detect if the query is a pure greeting or system check (not a real mental health question)""" | |
question_lower = question.lower().strip() | |
# Common greetings and casual conversation | |
greetings = [ | |
"hi", "hello", "hey", "good morning", "good afternoon", "good evening", | |
"how are you", "how's it going", "what's up", "sup", "yo" | |
] | |
# Very short or casual queries | |
if len(question_lower) <= 3 or question_lower in greetings: | |
return True | |
# System check/capability questions | |
casual_questions = [ | |
"how can you help", "what can you do", "what are you", "who are you", | |
"are you working", "are you there", "can you hear me", "test" | |
] | |
for casual in casual_questions: | |
if casual == question_lower: | |
return True | |
# Otherwise, treat as a real question (let LLM handle it) | |
return False | |
def _generate_conversational_response(self, question: str) -> str: | |
"""Generate a short, friendly response for greetings or system checks only""" | |
question_lower = question.lower().strip() | |
greetings = ["hi", "hello", "hey"] | |
if question_lower in greetings: | |
return "Hello! How can I support your mental health or well-being today?" | |
elif "how can you help" in question_lower or "what can you do" in question_lower: | |
return "I can offer brief, evidence-based tips and emotional support for mental health questions. What would you like to talk about?" | |
elif "who are you" in question_lower or "what are you" in question_lower: | |
return "I'm an AI companion here to help with mental health and wellness questions. How can I assist you?" | |
else: | |
return "How can I help you today? Feel free to ask about mental health, coping, or emotional support." | |
def _filter_relevant_results(self, search_results: List[Dict[str, Any]], question: str) -> List[Dict[str, Any]]: | |
"""Filter search results for relevance to the question""" | |
if not search_results: | |
return [] | |
question_lower = question.lower() | |
relevant_results = [] | |
for result in search_results: | |
content = result.get('content', '').lower() | |
metadata = result.get('metadata', {}) | |
# Skip very short or irrelevant content | |
if len(content) < 20: | |
continue | |
# Skip content that's just tags or metadata | |
if content.startswith('tags:') or content.startswith('question body:') or content.startswith('<p>'): | |
if len(content) < 50: # Very short HTML/tag content | |
continue | |
# Skip image descriptions and HTML artifacts | |
if 'image description' in content or 'alt=' in content or 'href=' in content: | |
continue | |
# Check if content contains relevant legal terms | |
legal_terms = [ | |
"therapy", "counseling", "psychology", "depression", "anxiety", | |
"trauma", "stress", "diagnosis", "treatment", "intervention", | |
"client", "therapist", "counselor", "session", "assessment", | |
"diagnostic", "recovery", "wellness", "coping", "disorder" | |
] | |
has_legal_content = any(term in content for term in legal_terms) | |
# Check if content is related to the question | |
question_words = question_lower.split() | |
relevant_words = [word for word in question_words if len(word) > 2] | |
content_relevance = sum(1 for word in relevant_words if word in content) | |
# Calculate relevance score | |
relevance_score = 0 | |
if has_legal_content: | |
relevance_score += 2 | |
relevance_score += content_relevance | |
# Only include results with sufficient relevance | |
if relevance_score >= 1: | |
result['relevance_score'] = relevance_score | |
relevant_results.append(result) | |
# Sort by relevance score (higher is better) | |
relevant_results.sort(key=lambda x: x.get('relevance_score', 0), reverse=True) | |
logger.info(f"Filtered {len(search_results)} results to {len(relevant_results)} relevant results") | |
return relevant_results |