Spaces:
Sleeping
Sleeping
File size: 19,993 Bytes
4732c3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
import os
import streamlit as st
from langchain_openai import OpenAI
from langchain_openai import OpenAIEmbeddings
from langchain_community.document_loaders import Docx2txtLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate
from langchain_core.messages import HumanMessage, SystemMessage
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.output_parsers import StrOutputParser
from dotenv import load_dotenv
# Retrieve OpenAI API key from the .env file
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
raise ValueError("OpenAI API key not found. Please set it in the .env file.")
# Set OpenAI API key
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
# Streamlit app configuration
st.set_page_config(page_title="College Data Chatbot", layout="centered")
st.title("PreCollege Chatbot")
# Initialize OpenAI LLM
llm = OpenAI(
model="gpt-3.5-turbo-instruct",
temperature=0,
)
# Initialize embeddings using OpenAI
embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")
def load_preprocessed_vectorstore():
try:
loader = Docx2txtLoader("./Updated_structred_aman.docx")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n", ". ", " ", ""],
chunk_size=3000,
chunk_overlap=200)
document_chunks = text_splitter.split_documents(documents)
vector_store = Chroma.from_documents(
embedding=embeddings,
documents=document_chunks,
persist_directory="./data11"
)
return vector_store
except Exception as e:
st.error(f"Error creating vector store: {e}")
return None
import logging
# Function to create the retriever and prompt chain
def get_context_retriever_chain(vector_store):
"""Creates a context-aware retriever and prompt chain."""
retriever = vector_store.as_retriever(k=3) # Hybrid retrieval for better results
rag_prompt = PromptTemplate(
template="""
Act as a PreCollege AI assistant dedicated to guiding students through their JEE Mains journey. Your goal is to provide personalized, accurate, and interactive advice for students seeking college admissions guidance. Tailor your responses to address students' individual needs, including:
1. College Selection and Counseling: Help students identify colleges they qualify for based on their JEE Mains rank and preferences, including IIITs institutions. Consider factors like location, course offerings, placement records, and fees.
2. Admission Process Guidance: Clarify the college admission procedures, including JoSAA counseling, spot rounds, document verification, and category-specific quotas (if applicable).
3. Career and Branch Selection Advice: Assist students in making informed decisions about their preferred engineering branches based on interest, market trends, and scope of opportunities.
Interactive Sessions: Engage students in Q&A sessions to answer their doubts related to preparation, counseling, and career choices.
Maintain a professional and friendly tone. Use your expertise to ensure students receive relevant and clear information. Provide examples, stats, and other insights to support your advice wherever needed.
QUESTION: {question}
CONTEXT: {context}
Answer in a detailed yet concise manner, also highlight relevant information and do not give unnecessary information or negative responses:
""",
input_variables=["question", "context"],
)
rag_prompt_chain = rag_prompt | llm | StrOutputParser()
return retriever, rag_prompt_chain
def get_response(user_query):
"""Processes the user query and generates a response."""
# Define a set of common greetings
greetings = ["hi", "hello", "hey", "greetings", "hi there"]
# Check if the user query is a greeting
if user_query.lower().strip() in greetings:
return "Hello! How can I assist you with your college search today?"
# Ensure the vector store is initialized
if "vector_store" not in st.session_state:
logging.error("Vector store is not initialized in session state.")
return "Vector store is not initialized. Please preprocess the document first."
retriever, rag_prompt_chain = get_context_retriever_chain(st.session_state.vector_store)
# Format chat history from session state
formatted_chat_history = []
for message in st.session_state.chat_history:
if message["author"] == "user":
formatted_chat_history.append({"author": "user", "content": message["content"]})
elif message["author"] == "assistant":
formatted_chat_history.append({"author": "assistant", "content": message["content"]})
try:
# Retrieve context
context = retriever.invoke(user_query)
logging.info(f"Retrieved context: {context}")
if not context:
logging.error("No relevant context retrieved.")
return "I couldn't retrieve relevant information. Please try a different query."
# Generate response
response = rag_prompt_chain.invoke({
"chat_history": formatted_chat_history,
"question": user_query,
"context": context
})
logging.info(f"Generated response: {response}")
# Check the response format
if isinstance(response, dict) and "answer" in response:
return response["answer"]
elif isinstance(response, str): # Handle raw string outputs
return response
else:
logging.error(f"Unexpected response format: {response}")
return "Unexpected error occurred. Please try again later."
except Exception as e:
logging.error(f"Error generating response: {e}")
return "Sorry, I encountered an issue while processing your request. Please try again later."
# Load the preprocessed vector store from the local directory
st.session_state.vector_store = load_preprocessed_vectorstore()
# Initialize chat history if not present
if "chat_history" not in st.session_state:
st.session_state.chat_history = [
{"author": "assistant", "content": "Hello, I am Precollege. How can I help you?"}
]
# Main app logic
if st.session_state.get("vector_store") is None:
st.error("Failed to load preprocessed data. Please ensure the data exists in './data' directory.")
else:
# Display chat history
with st.container():
for message in st.session_state.chat_history:
if message["author"] == "assistant":
with st.chat_message("system"):
st.write(message["content"])
elif message["author"] == "user":
with st.chat_message("human"):
st.write(message["content"])
# Add user input box below the chat
with st.container():
with st.form(key="chat_form", clear_on_submit=True):
user_query = st.text_input("Type your message here...", key="user_input")
submit_button = st.form_submit_button("Send")
if submit_button and user_query:
# Get bot response
response = get_response(user_query)
st.session_state.chat_history.append({"author": "user", "content": user_query})
st.session_state.chat_history.append({"author": "assistant", "content": response})
# Rerun the app to refresh the chat display
st.rerun()
# import os
# import streamlit as st
# from langchain_openai import OpenAI
# from langchain_openai import OpenAIEmbeddings
# from langchain_community.document_loaders import Docx2txtLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.vectorstores import Chroma
# from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
# from langchain_core.messages import HumanMessage, SystemMessage
# from langchain.chains import create_history_aware_retriever, create_retrieval_chain
# from langchain.chains.combine_documents import create_stuff_documents_chain
# from dotenv import load_dotenv
# # Retrieve OpenAI API key from the .env file
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# if not OPENAI_API_KEY:
# raise ValueError("OpenAI API key not found. Please set it in the .env file.")
# # Set OpenAI API key
# os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
# # Streamlit app configuration
# st.set_page_config(page_title="College Data Chatbot", layout="centered")
# st.title("PreCollege Chatbot")
# # Initialize OpenAI LLM
# llm = OpenAI(
# model="gpt-3.5-turbo-instruct",
# temperature=0,
# )
# # Initialize embeddings using OpenAI
# embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")
# def load_preprocessed_vectorstore():
# try:
# loader = Docx2txtLoader("./Updated_structred_aman.docx")
# documents = loader.load()
# text_splitter = RecursiveCharacterTextSplitter(
# separators=["\n\n", "\n", ". ", " ", ""],
# chunk_size=3000,
# chunk_overlap=200)
# document_chunks = text_splitter.split_documents(documents)
# vector_store = Chroma.from_documents(
# embedding=embeddings,
# documents=document_chunks,
# persist_directory="./data11"
# )
# return vector_store
# except Exception as e:
# st.error(f"Error creating vector store: {e}")
# return None
# def get_context_retriever_chain(vector_store):
# """Creates a history-aware retriever chain."""
# retriever = vector_store.as_retriever()
# # Define the prompt for the retriever chain
# prompt = ChatPromptTemplate.from_messages([
# MessagesPlaceholder(variable_name="chat_history"),
# ("user", "{input}"),
# ("system", "You are a PreCollege AI assistant helping students with JEE Mains college guidance. Answer interactively and provide relevant, accurate information.")
# ])
# retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
# return retriever_chain
# def get_conversational_chain(retriever_chain):
# """Creates a conversational chain using the retriever chain."""
# prompt = ChatPromptTemplate.from_messages([
# ("system", "Answer the user's questions based on the context below:\n\n{context}"),
# MessagesPlaceholder(variable_name="chat_history"),
# ("user", "{input}")
# ])
# stuff_documents_chain = create_stuff_documents_chain(llm, prompt)
# return create_retrieval_chain(retriever_chain, stuff_documents_chain)
# def get_response(user_query):
# retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
# conversation_rag_chain = get_conversational_chain(retriever_chain)
# formatted_chat_history = []
# for message in st.session_state.chat_history:
# if isinstance(message, HumanMessage):
# formatted_chat_history.append({"author": "user", "content": message.content})
# elif isinstance(message, SystemMessage):
# formatted_chat_history.append({"author": "assistant", "content": message.content})
# response = conversation_rag_chain.invoke({
# "chat_history": formatted_chat_history,
# "input": user_query
# })
# return response['answer']
# # Load the preprocessed vector store from the local directory
# st.session_state.vector_store = load_preprocessed_vectorstore()
# # Initialize chat history if not present
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = [
# {"author": "assistant", "content": "Hello, I am Precollege. How can I help you?"}
# ]
# # Main app logic
# if st.session_state.get("vector_store") is None:
# st.error("Failed to load preprocessed data. Please ensure the data exists in './data' directory.")
# else:
# # Display chat history
# with st.container():
# for message in st.session_state.chat_history:
# if message["author"] == "assistant":
# with st.chat_message("system"):
# st.write(message["content"])
# elif message["author"] == "user":
# with st.chat_message("human"):
# st.write(message["content"])
# # Add user input box below the chat
# with st.container():
# with st.form(key="chat_form", clear_on_submit=True):
# user_query = st.text_input("Type your message here...", key="user_input")
# submit_button = st.form_submit_button("Send")
# if submit_button and user_query:
# # Get bot response
# response = get_response(user_query)
# st.session_state.chat_history.append({"author": "user", "content": user_query})
# st.session_state.chat_history.append({"author": "assistant", "content": response})
# # Rerun the app to refresh the chat display
# st.rerun()
# import os
# import tempfile
# import streamlit as st
# from langchain_openai import OpenAI
# from langchain_openai import OpenAIEmbeddings
# from langchain_community.vectorstores import Chroma
# from langchain_community.document_loaders import Docx2txtLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
# from langchain_core.messages import HumanMessage, SystemMessage
# from langchain.chains import create_history_aware_retriever, create_retrieval_chain
# from langchain.chains.combine_documents import create_stuff_documents_chain
# # Load environment variables for API keys
# # load_dotenv()
# import os
# os.environ["OPENAI_API_KEY"]="sk-HQoHO1UganCjwF-tK2Hs-0wmwUHmVdiZIVwa_2SYBuT3BlbkFJSiebrtoqIo83LPDi-LaPHeLqndbP3I9tguwSnw3AMA"
# # Initialize OpenAI LLM
# llm = OpenAI(
# model="gpt-3.5-turbo-instruct",
# temperature=0,
# )
# # Initialize embeddings using OpenAI
# embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")
# def get_vectorstore_from_docx(docx_file):
# """Processes a .docx file to create a vector store."""
# try:
# with tempfile.NamedTemporaryFile(delete=False, suffix='.docx') as temp_file:
# temp_file.write(docx_file.read())
# temp_file_path = temp_file.name
# loader = Docx2txtLoader(temp_file_path)
# documents = loader.load()
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=200)
# document_chunks = text_splitter.split_documents(documents)
# vector_store = Chroma.from_documents(
# embedding=embeddings,
# documents=document_chunks,
# persist_directory="./data1"
# )
# os.remove(temp_file_path)
# return vector_store
# except Exception as e:
# st.error(f"Error creating vector store: {e}")
# return None
# def get_context_retriever_chain(vector_store):
# """Creates a history-aware retriever chain."""
# retriever = vector_store.as_retriever()
# prompt = ChatPromptTemplate.from_messages([
# MessagesPlaceholder(variable_name="chat_history"),
# ("user", "{input}"),
# ("system", "You are a PreCollege AI assistant helping students with JEE Mains college guidance. Answer interactively and provide relevant, accurate information.")
# ])
# retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
# return retriever_chain
# def get_conversational_chain(retriever_chain):
# """Creates a conversational chain using the retriever chain."""
# prompt = ChatPromptTemplate.from_messages([
# ("system", "Answer the user's questions based on the context below:\n\n{context}"),
# MessagesPlaceholder(variable_name="chat_history"),
# ("user", "{input}")
# ])
# stuff_documents_chain = create_stuff_documents_chain(llm, prompt)
# return create_retrieval_chain(retriever_chain, stuff_documents_chain)
# def get_response(user_query):
# retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
# conversation_rag_chain = get_conversational_chain(retriever_chain)
# formatted_chat_history = []
# for message in st.session_state.chat_history:
# if isinstance(message, HumanMessage):
# formatted_chat_history.append({"author": "user", "content": message.content})
# elif isinstance(message, SystemMessage):
# formatted_chat_history.append({"author": "assistant", "content": message.content})
# response = conversation_rag_chain.invoke({
# "chat_history": formatted_chat_history,
# "input": user_query
# })
# return response['answer']
# # Streamlit app configuration
# st.set_page_config(page_title="College Data Chatbot")
# st.title("College Data Chatbot")
# # Sidebar for document upload and automatic processing
# with st.sidebar:
# st.header("Upload College Data Document")
# docx_file = st.file_uploader("Upload a .docx file")
# if docx_file:
# # Automatically process the uploaded file
# st.session_state.vector_store = get_vectorstore_from_docx(docx_file)
# if st.session_state.vector_store:
# st.session_state.docx_name = docx_file.name
# st.success("Document processed successfully!")
# # Initialize chat history if not present
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = [
# {"author": "assistant", "content": "Hello, I am precollege. How can I help you?"}
# ]
# # Main chat section
# if st.session_state.get("vector_store") is None:
# st.info("Please upload and process a .docx file to get started.")
# else:
# # Display the chat history first
# with st.container():
# for message in st.session_state.chat_history:
# if message["author"] == "assistant":
# with st.chat_message("system"):
# st.write(message["content"])
# elif message["author"] == "user":
# with st.chat_message("human"):
# st.write(message["content"])
# # User input at the bottom of the chat
# with st.container():
# with st.form(key="chat_form", clear_on_submit=True):
# user_query = st.text_input("Type your message here...", key="user_input")
# submit_button = st.form_submit_button("Send")
# if submit_button and user_query:
# # Process the user query and get the bot's response
# response = get_response(user_query)
# st.session_state.chat_history.append({"author": "user", "content": user_query})
# st.session_state.chat_history.append({"author": "assistant", "content": response})
# # Scroll to the bottom of the chat
# # st.experimental_rerun()
|