File size: 19,993 Bytes
4732c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import os
import streamlit as st
from langchain_openai import OpenAI
from langchain_openai import OpenAIEmbeddings
from langchain_community.document_loaders import Docx2txtLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate
from langchain_core.messages import HumanMessage, SystemMessage
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.output_parsers import StrOutputParser
from dotenv import load_dotenv

# Retrieve OpenAI API key from the .env file
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

if not OPENAI_API_KEY:
    raise ValueError("OpenAI API key not found. Please set it in the .env file.")

# Set OpenAI API key
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY

# Streamlit app configuration
st.set_page_config(page_title="College Data Chatbot", layout="centered")
st.title("PreCollege Chatbot")

# Initialize OpenAI LLM
llm = OpenAI(
    model="gpt-3.5-turbo-instruct",
    temperature=0,
)

# Initialize embeddings using OpenAI
embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")

def load_preprocessed_vectorstore():
    try:
        loader = Docx2txtLoader("./Updated_structred_aman.docx")
        documents = loader.load()

        text_splitter = RecursiveCharacterTextSplitter(
            separators=["\n\n", "\n", ". ", " ", ""],
            chunk_size=3000, 
            chunk_overlap=200)
        
        document_chunks = text_splitter.split_documents(documents)

        vector_store = Chroma.from_documents(
            embedding=embeddings,
            documents=document_chunks,
            persist_directory="./data11"
        )
        return vector_store
    except Exception as e:
        st.error(f"Error creating vector store: {e}")
        return None

import logging

# Function to create the retriever and prompt chain
def get_context_retriever_chain(vector_store):
    """Creates a context-aware retriever and prompt chain."""
    retriever = vector_store.as_retriever(k=3)  # Hybrid retrieval for better results

    rag_prompt = PromptTemplate(
        template="""

        Act as a PreCollege AI assistant dedicated to guiding students through their JEE Mains journey. Your goal is to provide personalized, accurate, and interactive advice for students seeking college admissions guidance. Tailor your responses to address students' individual needs, including:



        1. College Selection and Counseling: Help students identify colleges they qualify for based on their JEE Mains rank and preferences, including IIITs institutions. Consider factors like location, course offerings, placement records, and fees.



        2. Admission Process Guidance: Clarify the college admission procedures, including JoSAA counseling, spot rounds, document verification, and category-specific quotas (if applicable).



        3. Career and Branch Selection Advice: Assist students in making informed decisions about their preferred engineering branches based on interest, market trends, and scope of opportunities.



        Interactive Sessions: Engage students in Q&A sessions to answer their doubts related to preparation, counseling, and career choices.



        Maintain a professional and friendly tone. Use your expertise to ensure students receive relevant and clear information. Provide examples, stats, and other insights to support your advice wherever needed.



        QUESTION: {question} 

        CONTEXT: {context} 

        Answer in a detailed yet concise manner, also highlight relevant information and do not give unnecessary information or negative responses:

        """,
        input_variables=["question", "context"],
    )

    rag_prompt_chain = rag_prompt | llm | StrOutputParser()

    return retriever, rag_prompt_chain


def get_response(user_query):
    """Processes the user query and generates a response."""
    # Define a set of common greetings
    greetings = ["hi", "hello", "hey", "greetings", "hi there"]

    # Check if the user query is a greeting
    if user_query.lower().strip() in greetings:
        return "Hello! How can I assist you with your college search today?"

    # Ensure the vector store is initialized
    if "vector_store" not in st.session_state:
        logging.error("Vector store is not initialized in session state.")
        return "Vector store is not initialized. Please preprocess the document first."

    retriever, rag_prompt_chain = get_context_retriever_chain(st.session_state.vector_store)

    # Format chat history from session state
    formatted_chat_history = []
    for message in st.session_state.chat_history:
        if message["author"] == "user":
            formatted_chat_history.append({"author": "user", "content": message["content"]})
        elif message["author"] == "assistant":
            formatted_chat_history.append({"author": "assistant", "content": message["content"]})

    try:
        # Retrieve context
        context = retriever.invoke(user_query)
        logging.info(f"Retrieved context: {context}")

        if not context:
            logging.error("No relevant context retrieved.")
            return "I couldn't retrieve relevant information. Please try a different query."

        # Generate response
        response = rag_prompt_chain.invoke({
            "chat_history": formatted_chat_history,
            "question": user_query,
            "context": context
        })
        logging.info(f"Generated response: {response}")

        # Check the response format
        if isinstance(response, dict) and "answer" in response:
            return response["answer"]
        elif isinstance(response, str):  # Handle raw string outputs
            return response
        else:
            logging.error(f"Unexpected response format: {response}")
            return "Unexpected error occurred. Please try again later."
    except Exception as e:
        logging.error(f"Error generating response: {e}")
        return "Sorry, I encountered an issue while processing your request. Please try again later."



# Load the preprocessed vector store from the local directory
st.session_state.vector_store = load_preprocessed_vectorstore()

# Initialize chat history if not present
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [
        {"author": "assistant", "content": "Hello, I am Precollege. How can I help you?"}
    ]

# Main app logic
if st.session_state.get("vector_store") is None:
    st.error("Failed to load preprocessed data. Please ensure the data exists in './data' directory.")
else:
    # Display chat history
    with st.container():
        for message in st.session_state.chat_history:
            if message["author"] == "assistant":
                with st.chat_message("system"):
                    st.write(message["content"])
            elif message["author"] == "user":
                with st.chat_message("human"):
                    st.write(message["content"])

    # Add user input box below the chat
    with st.container():
        with st.form(key="chat_form", clear_on_submit=True):
            user_query = st.text_input("Type your message here...", key="user_input")
            submit_button = st.form_submit_button("Send")

        if submit_button and user_query:
            # Get bot response
            response = get_response(user_query)
            st.session_state.chat_history.append({"author": "user", "content": user_query})
            st.session_state.chat_history.append({"author": "assistant", "content": response})

            # Rerun the app to refresh the chat display
            st.rerun()
















# import os
# import streamlit as st
# from langchain_openai import OpenAI
# from langchain_openai import OpenAIEmbeddings
# from langchain_community.document_loaders import Docx2txtLoader 
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.vectorstores import Chroma
# from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
# from langchain_core.messages import HumanMessage, SystemMessage
# from langchain.chains import create_history_aware_retriever, create_retrieval_chain
# from langchain.chains.combine_documents import create_stuff_documents_chain
# from dotenv import load_dotenv


# # Retrieve OpenAI API key from the .env file
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

# if not OPENAI_API_KEY:
#     raise ValueError("OpenAI API key not found. Please set it in the .env file.")

# # Set OpenAI API key
# os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
# # Streamlit app configuration
# st.set_page_config(page_title="College Data Chatbot", layout="centered")
# st.title("PreCollege Chatbot")

# # Initialize OpenAI LLM
# llm = OpenAI(
#     model="gpt-3.5-turbo-instruct",
#     temperature=0,
# )

# # Initialize embeddings using OpenAI
# embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")

# def load_preprocessed_vectorstore():
#     try:
#         loader = Docx2txtLoader("./Updated_structred_aman.docx")
#         documents = loader.load()

#         text_splitter = RecursiveCharacterTextSplitter(
#             separators=["\n\n", "\n", ". ", " ", ""],
#             chunk_size=3000, 
#             chunk_overlap=200)
        
#         document_chunks = text_splitter.split_documents(documents)

#         vector_store = Chroma.from_documents(
            
#             embedding=embeddings,
#             documents=document_chunks,
#             persist_directory="./data11"
#         )
#         return vector_store
#     except Exception as e:
#         st.error(f"Error creating vector store: {e}")
#         return None

# def get_context_retriever_chain(vector_store):
#     """Creates a history-aware retriever chain."""
#     retriever = vector_store.as_retriever()

#     # Define the prompt for the retriever chain
#     prompt = ChatPromptTemplate.from_messages([
#         MessagesPlaceholder(variable_name="chat_history"),
#         ("user", "{input}"),
#         ("system", "You are a PreCollege AI assistant helping students with JEE Mains college guidance. Answer interactively and provide relevant, accurate information.")
#     ])

#     retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
#     return retriever_chain

# def get_conversational_chain(retriever_chain):
#     """Creates a conversational chain using the retriever chain."""
#     prompt = ChatPromptTemplate.from_messages([
#         ("system", "Answer the user's questions based on the context below:\n\n{context}"),
#         MessagesPlaceholder(variable_name="chat_history"),
#         ("user", "{input}")
#     ])

#     stuff_documents_chain = create_stuff_documents_chain(llm, prompt)
#     return create_retrieval_chain(retriever_chain, stuff_documents_chain)

# def get_response(user_query):
#     retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
#     conversation_rag_chain = get_conversational_chain(retriever_chain)
    
#     formatted_chat_history = []
#     for message in st.session_state.chat_history:
#         if isinstance(message, HumanMessage):
#             formatted_chat_history.append({"author": "user", "content": message.content})
#         elif isinstance(message, SystemMessage):
#             formatted_chat_history.append({"author": "assistant", "content": message.content})
    
#     response = conversation_rag_chain.invoke({
#         "chat_history": formatted_chat_history,
#         "input": user_query
#     })
    
#     return response['answer']

# # Load the preprocessed vector store from the local directory
# st.session_state.vector_store = load_preprocessed_vectorstore()

# # Initialize chat history if not present
# if "chat_history" not in st.session_state:
#     st.session_state.chat_history = [
#         {"author": "assistant", "content": "Hello, I am Precollege. How can I help you?"}
#     ]

# # Main app logic
# if st.session_state.get("vector_store") is None:
#     st.error("Failed to load preprocessed data. Please ensure the data exists in './data' directory.")
# else:
#     # Display chat history
#     with st.container():
#         for message in st.session_state.chat_history:
#             if message["author"] == "assistant":
#                 with st.chat_message("system"):
#                     st.write(message["content"])
#             elif message["author"] == "user":
#                 with st.chat_message("human"):
#                     st.write(message["content"])

#     # Add user input box below the chat
#     with st.container():
#         with st.form(key="chat_form", clear_on_submit=True):
#             user_query = st.text_input("Type your message here...", key="user_input")
#             submit_button = st.form_submit_button("Send")

#         if submit_button and user_query:
#             # Get bot response
#             response = get_response(user_query)
#             st.session_state.chat_history.append({"author": "user", "content": user_query})
#             st.session_state.chat_history.append({"author": "assistant", "content": response})

#             # Rerun the app to refresh the chat display
#             st.rerun()




















# import os 
# import tempfile 
# import streamlit as st 
# from langchain_openai import OpenAI 
# from langchain_openai import OpenAIEmbeddings 
# from langchain_community.vectorstores import Chroma 
# from langchain_community.document_loaders import Docx2txtLoader 
# from langchain.text_splitter import RecursiveCharacterTextSplitter 
# from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder 
# from langchain_core.messages import HumanMessage, SystemMessage 
# from langchain.chains import create_history_aware_retriever, create_retrieval_chain  
# from langchain.chains.combine_documents import create_stuff_documents_chain 

# # Load environment variables for API keys 
# # load_dotenv() 
# import os 
# os.environ["OPENAI_API_KEY"]="sk-HQoHO1UganCjwF-tK2Hs-0wmwUHmVdiZIVwa_2SYBuT3BlbkFJSiebrtoqIo83LPDi-LaPHeLqndbP3I9tguwSnw3AMA" 

# # Initialize OpenAI LLM 
# llm = OpenAI( 
#     model="gpt-3.5-turbo-instruct",
#     temperature=0, 
# )

# # Initialize embeddings using OpenAI 
# embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")

# def get_vectorstore_from_docx(docx_file):
#     """Processes a .docx file to create a vector store.""" 
#     try:
#         with tempfile.NamedTemporaryFile(delete=False, suffix='.docx') as temp_file: 
#             temp_file.write(docx_file.read())
#             temp_file_path = temp_file.name

#         loader = Docx2txtLoader(temp_file_path)
#         documents = loader.load()

#         text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=200)
#         document_chunks = text_splitter.split_documents(documents)

#         vector_store = Chroma.from_documents(
#             embedding=embeddings,
#             documents=document_chunks,
#             persist_directory="./data1"
#         )
#         os.remove(temp_file_path)
#         return vector_store
#     except Exception as e:
#         st.error(f"Error creating vector store: {e}")
#         return None

# def get_context_retriever_chain(vector_store):
#     """Creates a history-aware retriever chain."""
#     retriever = vector_store.as_retriever()
    
#     prompt = ChatPromptTemplate.from_messages([
#         MessagesPlaceholder(variable_name="chat_history"),
#         ("user", "{input}"),
#         ("system", "You are a PreCollege AI assistant helping students with JEE Mains college guidance. Answer interactively and provide relevant, accurate information.")
#     ])
    
#     retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
#     return retriever_chain

# def get_conversational_chain(retriever_chain):
#     """Creates a conversational chain using the retriever chain."""
#     prompt = ChatPromptTemplate.from_messages([
#         ("system", "Answer the user's questions based on the context below:\n\n{context}"),
#         MessagesPlaceholder(variable_name="chat_history"),
#         ("user", "{input}")
#     ])
    
#     stuff_documents_chain = create_stuff_documents_chain(llm, prompt)
#     return create_retrieval_chain(retriever_chain, stuff_documents_chain)

# def get_response(user_query):
#     retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
#     conversation_rag_chain = get_conversational_chain(retriever_chain)
    
#     formatted_chat_history = []
#     for message in st.session_state.chat_history:
#         if isinstance(message, HumanMessage):
#             formatted_chat_history.append({"author": "user", "content": message.content})
#         elif isinstance(message, SystemMessage):
#             formatted_chat_history.append({"author": "assistant", "content": message.content})
    
#     response = conversation_rag_chain.invoke({
#         "chat_history": formatted_chat_history,
#         "input": user_query
#     })
    
#     return response['answer']

# # Streamlit app configuration
# st.set_page_config(page_title="College Data Chatbot")
# st.title("College Data Chatbot")

# # Sidebar for document upload and automatic processing
# with st.sidebar:
#     st.header("Upload College Data Document")
#     docx_file = st.file_uploader("Upload a .docx file")

#     if docx_file:
#         # Automatically process the uploaded file
#         st.session_state.vector_store = get_vectorstore_from_docx(docx_file)
#         if st.session_state.vector_store:
#             st.session_state.docx_name = docx_file.name
#             st.success("Document processed successfully!")

# # Initialize chat history if not present
# if "chat_history" not in st.session_state:
#     st.session_state.chat_history = [
#         {"author": "assistant", "content": "Hello, I am precollege. How can I help you?"}
#     ]

# # Main chat section
# if st.session_state.get("vector_store") is None:
#     st.info("Please upload and process a .docx file to get started.")
# else:
#     # Display the chat history first
#     with st.container():
#         for message in st.session_state.chat_history:
#             if message["author"] == "assistant":
#                 with st.chat_message("system"):
#                     st.write(message["content"])
#             elif message["author"] == "user":
#                 with st.chat_message("human"):
#                     st.write(message["content"])

#     # User input at the bottom of the chat
#     with st.container():
#         with st.form(key="chat_form", clear_on_submit=True):
#             user_query = st.text_input("Type your message here...", key="user_input")
#             submit_button = st.form_submit_button("Send")

#         if submit_button and user_query:
#             # Process the user query and get the bot's response
#             response = get_response(user_query)
#             st.session_state.chat_history.append({"author": "user", "content": user_query})
#             st.session_state.chat_history.append({"author": "assistant", "content": response})

#             # Scroll to the bottom of the chat
#             # st.experimental_rerun()