Spaces:
Paused
Paused
| import gradio as gr | |
| from huggingface_hub import login | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from threading import Thread | |
| import torch | |
| MODEL = "m-a-p/OpenCodeInterpreter-DS-33B" | |
| system_message = "You are a computer programmer that can translate python code to C++ in order to improve performance" | |
| def user_prompt_for(python): | |
| return f"Rewrite this python code to C++. You must search for the maximum performance. \ | |
| Format your response in Markdown. This is the python Code, between triple backticks: \ | |
| \n\n\ | |
| ```{python}```" | |
| def messages_for(python): | |
| return [ | |
| {"role": "system", "content": system_message}, | |
| {"role": "user", "content": user_prompt_for(python)} | |
| ] | |
| def apply_chat_template(messages): | |
| result = "" | |
| for message in messages: | |
| if message['role'] == 'system': | |
| result += f"{message['content']}\n" | |
| elif message['role'] == 'user': | |
| result += f"### Instruction:\n{message['content']}\n" | |
| else: | |
| result += f"### Response:\n{message['content']}\n<|EOT|>\n" | |
| return result | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
| model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, device_map="auto") | |
| model.eval() | |
| decode_kwargs = dict(skip_special_tokens=True) | |
| streamer = TextIteratorStreamer(tokenizer, decode_kwargs=decode_kwargs) | |
| cplusplus = None | |
| def translate(python): | |
| inputs = tokenizer(apply_chat_template(messages_for(python)), return_tensors="pt").to(model.device) | |
| generation_kwargs = dict( | |
| inputs, | |
| streamer=streamer, | |
| max_new_tokens=1024, | |
| do_sample=False, | |
| pad_token_id=tokenizer.eos_token_id, | |
| eos_token_id=tokenizer.eos_token_id | |
| ) | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| cplusplus = "" | |
| for chunk in streamer: | |
| cplusplus += chunk | |
| yield cplusplus | |
| demo = gr.Interface(fn=translate, inputs="code", outputs="markdown") | |
| demo.launch() | |