Spaces:
Sleeping
Sleeping
import os | |
os.system("pip install tensorflow gradio numpy pillow") # Install required packages | |
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from tensorflow.keras.preprocessing import image | |
# Load the trained model | |
model = tf.keras.models.load_model("bone_xray_cnn_model.h5") | |
# Prediction function | |
def predict_bone_xray(img): | |
img = img.resize((224, 224)) # Resize image | |
img_array = image.img_to_array(img) / 255.0 # Normalize | |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension | |
prediction = np.argmax(model.predict(img_array)) | |
if prediction == 0: | |
return "Fractured Bone" | |
else: | |
return "Healthy Bone" | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=predict_bone_xray, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="Bone X-ray Classifier", | |
description="Upload an X-ray image to detect bone fractures." | |
) | |
interface.launch() | |