Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
@@ -9,84 +13,101 @@ import matplotlib.pyplot as plt
|
|
9 |
|
10 |
def load_data(input_source):
|
11 |
"""Handle both uploaded files and URLs"""
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
df = df.groupby('Country/Region').sum().T
|
32 |
-
df.index = pd.to_datetime(df.index)
|
33 |
-
df['Global'] = df.sum(axis=1)
|
34 |
-
return df['Global'].diff().fillna(0)
|
35 |
|
36 |
def analyze_data(input_source):
|
37 |
try:
|
|
|
|
|
|
|
38 |
data = load_data(input_source)
|
39 |
|
40 |
-
#
|
41 |
N = len(data)
|
42 |
yf = fft(data.values)
|
43 |
xf = fftfreq(N, 1)[:N//2]
|
44 |
cycle_days = int(1/xf[np.argmax(np.abs(yf[0:N//2]))])
|
45 |
|
46 |
# Create plot
|
47 |
-
fig, ax = plt.subplots()
|
48 |
-
ax.plot(data.index, data.values)
|
49 |
-
ax.set_title("COVID-19
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
return (
|
52 |
-
f"
|
53 |
-
f"- Cycle: {cycle_days} days\n"
|
54 |
-
f"-
|
55 |
-
f"- Current
|
|
|
56 |
fig
|
57 |
)
|
58 |
|
59 |
except Exception as e:
|
60 |
return f"โ Error: {str(e)}", None
|
61 |
|
62 |
-
# Create
|
63 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
64 |
-
gr.Markdown("#
|
65 |
-
gr.Markdown("
|
66 |
|
67 |
with gr.Row():
|
68 |
with gr.Column():
|
69 |
-
file_upload = gr.File(label="Upload CSV", file_count=
|
70 |
-
url_input = gr.Textbox(label="Or paste URL here")
|
71 |
-
submit_btn = gr.Button("Analyze")
|
|
|
72 |
with gr.Column():
|
73 |
-
|
74 |
-
plot_output = gr.Plot()
|
75 |
|
76 |
-
#
|
77 |
submit_btn.click(
|
78 |
fn=analyze_data,
|
79 |
inputs=[gr.combine(file_upload, url_input)],
|
80 |
-
outputs=[
|
81 |
)
|
82 |
|
83 |
-
#
|
84 |
gr.Examples(
|
85 |
examples=[
|
86 |
-
["https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/data/time_series_covid19_confirmed_global.csv"]
|
87 |
-
["sample_data.csv"] # Upload this via Hugging Face
|
88 |
],
|
89 |
-
inputs=[url_input]
|
|
|
90 |
)
|
91 |
|
92 |
if __name__ == "__main__":
|
|
|
1 |
+
# app.py
|
2 |
+
import os
|
3 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # Suppress TensorFlow warnings
|
4 |
+
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
import numpy as np
|
|
|
13 |
|
14 |
def load_data(input_source):
|
15 |
"""Handle both uploaded files and URLs"""
|
16 |
+
try:
|
17 |
+
if isinstance(input_source, str) and input_source.startswith("http"):
|
18 |
+
# Load from URL
|
19 |
+
df = pd.read_csv(
|
20 |
+
input_source,
|
21 |
+
engine='python',
|
22 |
+
on_bad_lines='warn',
|
23 |
+
encoding='utf-8'
|
24 |
+
)
|
25 |
+
else:
|
26 |
+
# Load from uploaded file
|
27 |
+
df = pd.read_csv(
|
28 |
+
input_source.name,
|
29 |
+
engine='python',
|
30 |
+
on_bad_lines='warn',
|
31 |
+
encoding='utf-8'
|
32 |
+
)
|
33 |
+
|
34 |
+
# Common cleaning steps
|
35 |
+
df = df.drop(columns=['Province/State', 'Lat', 'Long'], errors='ignore')
|
36 |
+
df = df.groupby('Country/Region').sum().T
|
37 |
+
df.index = pd.to_datetime(df.index)
|
38 |
+
df['Global'] = df.sum(axis=1)
|
39 |
+
return df['Global'].diff().fillna(0)
|
40 |
|
41 |
+
except Exception as e:
|
42 |
+
raise ValueError(f"Data loading failed: {str(e)}")
|
|
|
|
|
|
|
|
|
43 |
|
44 |
def analyze_data(input_source):
|
45 |
try:
|
46 |
+
if not input_source:
|
47 |
+
return "โ ๏ธ Please upload a file or enter a URL", None
|
48 |
+
|
49 |
data = load_data(input_source)
|
50 |
|
51 |
+
# Cycle detection
|
52 |
N = len(data)
|
53 |
yf = fft(data.values)
|
54 |
xf = fftfreq(N, 1)[:N//2]
|
55 |
cycle_days = int(1/xf[np.argmax(np.abs(yf[0:N//2]))])
|
56 |
|
57 |
# Create plot
|
58 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
59 |
+
ax.plot(data.index, data.values, label='Daily Cases')
|
60 |
+
ax.set_title("COVID-19 Analysis")
|
61 |
+
ax.set_xlabel("Date")
|
62 |
+
ax.set_ylabel("New Cases")
|
63 |
+
ax.grid(True)
|
64 |
+
plt.tight_layout()
|
65 |
+
|
66 |
+
# Generate insights
|
67 |
+
latest_avg = data[-30:].mean()
|
68 |
+
trend = "โ Rising" if data[-1] > data[-7] else "โ Falling"
|
69 |
|
70 |
return (
|
71 |
+
f"๐ Analysis Results:\n"
|
72 |
+
f"- Dominant Cycle: {cycle_days} days\n"
|
73 |
+
f"- 30-Day Average: {latest_avg:.1f} cases/day\n"
|
74 |
+
f"- Current Trend: {trend}\n"
|
75 |
+
f"โ
Analysis completed successfully!",
|
76 |
fig
|
77 |
)
|
78 |
|
79 |
except Exception as e:
|
80 |
return f"โ Error: {str(e)}", None
|
81 |
|
82 |
+
# Create interface
|
83 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
84 |
+
gr.Markdown("# ๐ฆ COVID-19 Analysis Bot")
|
85 |
+
gr.Markdown("Analyze case data from URLs or uploaded CSV files")
|
86 |
|
87 |
with gr.Row():
|
88 |
with gr.Column():
|
89 |
+
file_upload = gr.File(label="1. Upload CSV", file_count='single')
|
90 |
+
url_input = gr.Textbox(label="2. Or paste data URL here")
|
91 |
+
submit_btn = gr.Button("Analyze โ")
|
92 |
+
|
93 |
with gr.Column():
|
94 |
+
chat_output = gr.Chatbot(label="Analysis Results", height=300)
|
95 |
+
plot_output = gr.Plot(label="Case Trend")
|
96 |
|
97 |
+
# Link components
|
98 |
submit_btn.click(
|
99 |
fn=analyze_data,
|
100 |
inputs=[gr.combine(file_upload, url_input)],
|
101 |
+
outputs=[chat_output, plot_output]
|
102 |
)
|
103 |
|
104 |
+
# Examples
|
105 |
gr.Examples(
|
106 |
examples=[
|
107 |
+
["https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/data/time_series_covid19_confirmed_global.csv"]
|
|
|
108 |
],
|
109 |
+
inputs=[url_input],
|
110 |
+
label="Try this example URL:"
|
111 |
)
|
112 |
|
113 |
if __name__ == "__main__":
|