import gradio as gr import pandas as pd import numpy as np from scipy.fft import fft, fftfreq from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Sequential, load_model import requests # --- Pre-trained Model (Simple LSTM) --- def build_model(): model = Sequential([ tf.keras.layers.LSTM(32, input_shape=(30, 1)), tf.keras.layers.Dense(1) ]) model.compile(loss='mse', optimizer='adam') return model # --- Core Functions --- def analyze_data(data_url, prediction_days=30): try: # 1. Fetch data df = pd.read_csv(data_url) dates = df.columns[4:] # COVID data format values = df.drop(columns=['Province/State', 'Country/Region', 'Lat', 'Long']).sum(axis=0)[4:].values.astype(float) # 2. Detect cycles N = len(values) yf = fft(values) xf = fftfreq(N, 1)[:N//2] dominant_freq = xf[np.argmax(np.abs(yf[0:N//2]))] cycle_days = int(1/dominant_freq) # 3. Make predictions (simplified) scaler = MinMaxScaler() scaled = scaler.fit_transform(values.reshape(-1, 1)) model = build_model() model.fit(scaled[:-10], scaled[10:], epochs=5, verbose=0) # Quick training preds = model.predict(scaled[-30:].reshape(1, 30, 1)) preds = scaler.inverse_transform(preds).flatten().tolist() # 4. Generate insights insights = [ f"Dominant cycle: {cycle_days} days", f"Next {prediction_days}-day trend: {'↑ Upward' if preds[-1] > preds[0] else '↓ Downward'}", "Action: Monitor closely around cycle peaks" ] # Simple plot plot = pd.DataFrame({ 'Historical': values, 'Predicted': [None]*(len(values)) + preds }).plot(title="Cases Analysis").figure return plot, insights except Exception as e: return None, [f"Error: {str(e)}"] # --- Gradio Interface --- interface = gr.Interface( fn=analyze_data, inputs=[ gr.Textbox(label="Data URL", value="https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/data/time_series_covid19_confirmed_global.csv"), gr.Number(label="Days to Predict", value=30) ], outputs=[ gr.Plot(label="Analysis"), gr.JSON(label="Insights") ], title="DeepSeek Lite Analyzer", description="Analyze time-series data from public URLs. Works best with COVID-19 format data." ) interface.launch()