aiwhisperer33 commited on
Commit
b2e460b
·
verified ·
1 Parent(s): 2723f73

Create Core Code

Browse files
Files changed (1) hide show
  1. Core Code +77 -0
Core Code ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ from scipy.fft import fft, fftfreq
5
+ from sklearn.preprocessing import MinMaxScaler
6
+ from tensorflow.keras.models import Sequential, load_model
7
+ import requests
8
+
9
+ # --- Pre-trained Model (Simple LSTM) ---
10
+ def build_model():
11
+ model = Sequential([
12
+ tf.keras.layers.LSTM(32, input_shape=(30, 1)),
13
+ tf.keras.layers.Dense(1)
14
+ ])
15
+ model.compile(loss='mse', optimizer='adam')
16
+ return model
17
+
18
+ # --- Core Functions ---
19
+ def analyze_data(data_url, prediction_days=30):
20
+ try:
21
+ # 1. Fetch data
22
+ df = pd.read_csv(data_url)
23
+ dates = df.columns[4:] # COVID data format
24
+ values = df.drop(columns=['Province/State', 'Country/Region', 'Lat', 'Long']).sum(axis=0)[4:].values.astype(float)
25
+
26
+ # 2. Detect cycles
27
+ N = len(values)
28
+ yf = fft(values)
29
+ xf = fftfreq(N, 1)[:N//2]
30
+ dominant_freq = xf[np.argmax(np.abs(yf[0:N//2]))]
31
+ cycle_days = int(1/dominant_freq)
32
+
33
+ # 3. Make predictions (simplified)
34
+ scaler = MinMaxScaler()
35
+ scaled = scaler.fit_transform(values.reshape(-1, 1))
36
+
37
+ model = build_model()
38
+ model.fit(scaled[:-10], scaled[10:], epochs=5, verbose=0) # Quick training
39
+
40
+ preds = model.predict(scaled[-30:].reshape(1, 30, 1))
41
+ preds = scaler.inverse_transform(preds).flatten().tolist()
42
+
43
+ # 4. Generate insights
44
+ insights = [
45
+ f"Dominant cycle: {cycle_days} days",
46
+ f"Next {prediction_days}-day trend: {'↑ Upward' if preds[-1] > preds[0] else '↓ Downward'}",
47
+ "Action: Monitor closely around cycle peaks"
48
+ ]
49
+
50
+ # Simple plot
51
+ plot = pd.DataFrame({
52
+ 'Historical': values,
53
+ 'Predicted': [None]*(len(values)) + preds
54
+ }).plot(title="Cases Analysis").figure
55
+
56
+ return plot, insights
57
+
58
+ except Exception as e:
59
+ return None, [f"Error: {str(e)}"]
60
+
61
+ # --- Gradio Interface ---
62
+ interface = gr.Interface(
63
+ fn=analyze_data,
64
+ inputs=[
65
+ gr.Textbox(label="Data URL",
66
+ value="https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/data/time_series_covid19_confirmed_global.csv"),
67
+ gr.Number(label="Days to Predict", value=30)
68
+ ],
69
+ outputs=[
70
+ gr.Plot(label="Analysis"),
71
+ gr.JSON(label="Insights")
72
+ ],
73
+ title="DeepSeek Lite Analyzer",
74
+ description="Analyze time-series data from public URLs. Works best with COVID-19 format data."
75
+ )
76
+
77
+ interface.launch()