File size: 4,300 Bytes
c736f27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import time
from itertools import islice
import shutil
from threading import Thread

import lancedb
import gradio as gr
import polars as pl
from datasets import load_dataset
from sentence_transformers import SentenceTransformer


STYLE = """
.gradio-container td span {
    overflow: auto !important;
}
""".strip()

# 
EMBEDDING_MODEL = SentenceTransformer("TaylorAI/bge-micro")

MAX_N_ROWS = 3_000_000
N_ROWS_BATCH = 5_000
N_SEARCH_RESULTS = 15
CRAWL_DUMP = "CC-MAIN-2020-05"
DB = None
DISPLAY_COLUMNS = [
    "text",
    "url",
    "token_count",
    "count",
]
DISPLAY_COLUMN_TYPES = [
    "str",
    "str",
    "number",
    "number",
]
DISPLAY_COLUMN_WIDTHS = [
    "300px",
    "100px",
    "50px",
    "25px",
]

def rename_embedding_column(row):
    vector = row["embedding"]
    row["vector"] = vector
    del row["embedding"]
    return row


def read_header_markdown() -> str:
    with open("./README.md", "r") as fp:
        text = fp.read(-1)

    # Get only the markdown following the HF metadata section.
    text = text.split("\n---\n")[-1]
    return text.replace("{{CRAWL_DUMP}}", CRAWL_DUMP)


def db():
    global DB
    if DB is None:
        DB = lancedb.connect("data")
    return DB

def load_data_sample():
    time.sleep(5)

    # remove any data that was already there; we want to replace it.
    if os.path.exists("data"):
        shutil.rmtree("data")
    
    rows = load_dataset(
        "airtrain-ai/fineweb-edu-fortified",
        name=CRAWL_DUMP,
        split="train",
        streaming=True,
    )

    print("Loading data")

    # at this point you could iterate over the rows.
    # Here, we'll take a sample of rows with size
    # MAX_N_ROWS. Using islice will load only the amount
    # we asked for and no extras.
    sample = islice(rows, MAX_N_ROWS)

    table = None
    n_rows_loaded = 0
    while True:
        batch = list(islice(sample, N_ROWS_BATCH))
        if len(batch) == 0:
            break
        
        # We'll put it in a vector DB for easy vector search.
        # rename "embedding" column to "vector"
        data = [rename_embedding_column(row) for row in batch]
        n_rows_loaded += len(data)

        if table is None:
            print("Creating table")
            table = db().create_table("data", data=data)

            # index the embedding column for fast search.
            print("Indexing table")
            table.create_index(num_sub_vectors=1)
        else:
            table.add(data)

        print(f"Loaded {n_rows_loaded} rows")
    print("Done loading data")



def search(search_phrase: str) -> tuple[pl.DataFrame, int]:
    while "data" not in db().table_names():
        # Data is loaded asynchronously. Make sure there is at least
        # some in the table before searching.
        time.sleep(1)

    # Create our search vector
    embedding = EMBEDDING_MODEL.encode([search_phrase])[0]

    # Search
    table = db().open_table("data")
    data_frame = table.search(embedding).limit(N_SEARCH_RESULTS).to_polars()

    return (
        # Return only what we want to display
        data_frame.select(*[pl.col(c) for c in DISPLAY_COLUMNS]).to_pandas(),
        table.count_rows(),
    )



with gr.Blocks(css=STYLE) as demo:
    gr.HTML(f"<style>{STYLE}</style>")
    with gr.Row():
        gr.Markdown(read_header_markdown())
    with gr.Row():
        input_text = gr.Textbox(label="Search phrase", scale=100)
        search_button = gr.Button("Search", scale=1, min_width=100)
    with gr.Row():
        rows_searched = gr.Number(
            label="Rows searched",
            show_label=True,
        )
    with gr.Row():
        search_results = gr.DataFrame(
            headers=DISPLAY_COLUMNS,
            type="pandas",
            datatype=DISPLAY_COLUMN_TYPES,
            row_count=N_SEARCH_RESULTS,
            col_count=(len(DISPLAY_COLUMNS), "fixed"),
            column_widths=DISPLAY_COLUMN_WIDTHS,
            elem_classes=".df-text-col",
        )
    search_button.click(
        search,
        [input_text],
        [search_results, rows_searched],
    )


# load data on another thread so we can start searching even before it's
# all loaded.
data_load_thread = Thread(target=load_data_sample, daemon=True)
data_load_thread.start()

print("Launching app")
demo.launch()