File size: 8,758 Bytes
bce439c
7f98410
 
 
0e14842
 
bce439c
0e14842
bce439c
fda85af
0e14842
9dace64
 
7f98410
f3cae17
7f98410
0e14842
bce439c
9153c3d
0e14842
bce439c
 
 
0e14842
 
 
 
f3cae17
7f98410
 
 
 
 
 
 
 
f3cae17
 
 
 
 
 
7f98410
 
 
 
 
 
 
 
 
 
 
 
0e14842
f3cae17
b03c39e
 
f3cae17
bce439c
 
 
 
 
 
 
 
 
 
 
 
0e14842
 
fda85af
 
bce439c
 
 
 
 
 
 
fda85af
bce439c
7f98410
9dace64
 
7f98410
 
 
0e14842
b03c39e
cbd6325
b03c39e
cbd6325
b03c39e
cbd6325
b03c39e
cbd6325
b03c39e
cbd6325
b03c39e
cbd6325
b03c39e
 
bce439c
bf65a8f
 
0e14842
 
 
9dace64
b03c39e
9d997d8
 
7f98410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b03c39e
7f98410
 
0e14842
bce439c
7f98410
9dace64
7f98410
 
 
 
 
9dace64
 
a2bd23b
9dace64
fda85af
bce439c
9dace64
 
 
 
 
 
 
 
 
 
0e14842
 
bce439c
 
 
 
 
 
 
 
 
fda85af
bce439c
7f98410
ba0cd8f
0e14842
fda85af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# Create permanent storage directory
SAVE_DIR = "saved_images"  # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "ginipick/flux-lora-eric-cat"

pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def save_generated_image(image, prompt):
    # Generate unique filename with timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    
    # Save the image
    image.save(filepath)
    
    # Save metadata
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    
    return filepath

def load_generated_images():
    if not os.path.exists(SAVE_DIR):
        return []
    
    # Load all images from the directory
    image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR) 
                  if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
    # Sort by creation time (newest first)
    image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
    return image_files

def load_predefined_images():
    # Return empty list since we're not using predefined images
    return []

@spaces.GPU(duration=120)
def inference(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    lora_scale: float,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    
    # Save the generated image
    filepath = save_generated_image(image, prompt)
    
    # Return the image, seed, and updated gallery
    return image, seed, load_generated_images()

examples = [
    "A fluffy white Persian cat in a tiny royal hanbok, sitting regally on a velvet cushion. The cat wears a miniature golden crown and a silk hanbok in pastel pink and mint green. Its long fur is perfectly groomed, and it has bright blue eyes that sparkle with nobility. The background features traditional Korean palace decorations and cherry blossoms floating in the air. [trigger]",
    
    "An adorable orange tabby cat as a master chef, wearing a white chef's hat and apron, standing on its hind legs at a tiny kitchen counter. The cat is delicately holding a miniature rolling pin, preparing cat-shaped cookies. The cozy kitchen background features tiny cooking utensils and a warm, golden afternoon light streaming through the window. [trigger]",
    
    "A playful black and white tuxedo cat as a professional photographer, wearing tiny round glasses and a vintage camera around its neck. The cat is perfectly balanced on a tree branch, attempting to photograph a butterfly. It wears a cute brown leather camera bag and a mini beret, looking artistic and focused. [trigger]",
    
    "A sleepy Scottish Fold cat in astronaut gear, floating inside a spaceship cabin. The cat wears a custom-fit space suit with cute patches, gently batting at floating star-shaped toys. Through the spaceship window, Earth and twinkling stars create a magical cosmic background. [trigger]",
    
    "A graceful Siamese ballet dancer cat in a sparkly pink tutu, performing a perfect pirouette on a miniature stage. The cat wears tiny satin ballet slippers on its paws and a crystal tiara. The stage is lit with soft spotlights, and rose petals are scattered around its dancing feet. [trigger]",
    
    "A adventurous calico cat explorer in safari gear, riding on top of a friendly elephant. The cat wears a tiny khaki vest with many pockets, a safari hat, and carries a miniature map. The background shows a beautiful sunset over the African savanna with acacia trees and colorful birds flying overhead. [trigger]"
]

css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, analytics_enabled=False) as demo:
    gr.HTML('<div class="title"> First CAT of Huggingface </div>')
    gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')

    with gr.Tabs() as tabs:
        with gr.Tab("Generation"):
            with gr.Column(elem_id="col-container"):
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)

                result = gr.Image(label="Result", show_label=False)

                with gr.Accordion("Advanced Settings", open=False):
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=42,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=1024,
                        )
                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=768,
                        )

                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=10.0,
                            step=0.1,
                            value=3.5,
                        )
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=30,
                        )
                        lora_scale = gr.Slider(
                            label="LoRA scale",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                        )

                gr.Examples(
                    examples=examples,
                    inputs=[prompt],
                    outputs=[result, seed],
                )

        with gr.Tab("Gallery"):
            gallery_header = gr.Markdown("### Generated Images Gallery")
            generated_gallery = gr.Gallery(
                label="Generated Images",
                columns=6,
                show_label=False,
                value=load_generated_images(),
                elem_id="generated_gallery",
                height="auto"
            )
            refresh_btn = gr.Button("🔄 Refresh Gallery")


    # Event handlers
    def refresh_gallery():
        return load_generated_images()

    refresh_btn.click(
        fn=refresh_gallery,
        inputs=None,
        outputs=generated_gallery,
    )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed, generated_gallery],
    )

demo.queue()
demo.launch()