Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,758 Bytes
bce439c 7f98410 0e14842 bce439c 0e14842 bce439c fda85af 0e14842 9dace64 7f98410 f3cae17 7f98410 0e14842 bce439c 9153c3d 0e14842 bce439c 0e14842 f3cae17 7f98410 f3cae17 7f98410 0e14842 f3cae17 b03c39e f3cae17 bce439c 0e14842 fda85af bce439c fda85af bce439c 7f98410 9dace64 7f98410 0e14842 b03c39e cbd6325 b03c39e cbd6325 b03c39e cbd6325 b03c39e cbd6325 b03c39e cbd6325 b03c39e cbd6325 b03c39e bce439c bf65a8f 0e14842 9dace64 b03c39e 9d997d8 7f98410 b03c39e 7f98410 0e14842 bce439c 7f98410 9dace64 7f98410 9dace64 a2bd23b 9dace64 fda85af bce439c 9dace64 0e14842 bce439c fda85af bce439c 7f98410 ba0cd8f 0e14842 fda85af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "ginipick/flux-lora-eric-cat"
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
def load_generated_images():
if not os.path.exists(SAVE_DIR):
return []
# Load all images from the directory
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
# Sort by creation time (newest first)
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
return image_files
def load_predefined_images():
# Return empty list since we're not using predefined images
return []
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Save the generated image
filepath = save_generated_image(image, prompt)
# Return the image, seed, and updated gallery
return image, seed, load_generated_images()
examples = [
"A fluffy white Persian cat in a tiny royal hanbok, sitting regally on a velvet cushion. The cat wears a miniature golden crown and a silk hanbok in pastel pink and mint green. Its long fur is perfectly groomed, and it has bright blue eyes that sparkle with nobility. The background features traditional Korean palace decorations and cherry blossoms floating in the air. [trigger]",
"An adorable orange tabby cat as a master chef, wearing a white chef's hat and apron, standing on its hind legs at a tiny kitchen counter. The cat is delicately holding a miniature rolling pin, preparing cat-shaped cookies. The cozy kitchen background features tiny cooking utensils and a warm, golden afternoon light streaming through the window. [trigger]",
"A playful black and white tuxedo cat as a professional photographer, wearing tiny round glasses and a vintage camera around its neck. The cat is perfectly balanced on a tree branch, attempting to photograph a butterfly. It wears a cute brown leather camera bag and a mini beret, looking artistic and focused. [trigger]",
"A sleepy Scottish Fold cat in astronaut gear, floating inside a spaceship cabin. The cat wears a custom-fit space suit with cute patches, gently batting at floating star-shaped toys. Through the spaceship window, Earth and twinkling stars create a magical cosmic background. [trigger]",
"A graceful Siamese ballet dancer cat in a sparkly pink tutu, performing a perfect pirouette on a miniature stage. The cat wears tiny satin ballet slippers on its paws and a crystal tiara. The stage is lit with soft spotlights, and rose petals are scattered around its dancing feet. [trigger]",
"A adventurous calico cat explorer in safari gear, riding on top of a friendly elephant. The cat wears a tiny khaki vest with many pockets, a safari hat, and carries a miniature map. The background shows a beautiful sunset over the African savanna with acacia trees and colorful birds flying overhead. [trigger]"
]
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, analytics_enabled=False) as demo:
gr.HTML('<div class="title"> First CAT of Huggingface </div>')
gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')
with gr.Tabs() as tabs:
with gr.Tab("Generation"):
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
)
with gr.Tab("Gallery"):
gallery_header = gr.Markdown("### Generated Images Gallery")
generated_gallery = gr.Gallery(
label="Generated Images",
columns=6,
show_label=False,
value=load_generated_images(),
elem_id="generated_gallery",
height="auto"
)
refresh_btn = gr.Button("🔄 Refresh Gallery")
# Event handlers
def refresh_gallery():
return load_generated_images()
refresh_btn.click(
fn=refresh_gallery,
inputs=None,
outputs=generated_gallery,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed, generated_gallery],
)
demo.queue()
demo.launch() |