Update app.py
Browse files
app.py
CHANGED
@@ -3,74 +3,20 @@ import numpy as np
|
|
3 |
import random
|
4 |
import torch
|
5 |
from diffusers import DiffusionPipeline
|
6 |
-
import warnings
|
7 |
-
import os
|
8 |
-
from datetime import datetime
|
9 |
-
import uuid
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
# 저장 디렉토리 생성
|
15 |
-
SAVE_DIR = "saved_images"
|
16 |
-
if not os.path.exists(SAVE_DIR):
|
17 |
-
os.makedirs(SAVE_DIR, exist_ok=True)
|
18 |
-
|
19 |
-
# 장치 및 dtype 설정
|
20 |
-
dtype = torch.float32 if torch.cuda.is_available() else torch.float32
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
|
23 |
# 모델 로드
|
24 |
pipe = DiffusionPipeline.from_pretrained(
|
25 |
-
"black-forest-labs/FLUX.1-schnell",
|
26 |
-
torch_dtype=dtype
|
27 |
-
device_map="balanced" if torch.cuda.is_available() else None,
|
28 |
-
use_safetensors=True
|
29 |
).to(device)
|
30 |
|
31 |
-
# 메모리 최적화
|
32 |
-
pipe.enable_attention_slicing()
|
33 |
-
if device == "cpu":
|
34 |
-
pipe.enable_sequential_cpu_offload()
|
35 |
-
|
36 |
MAX_SEED = np.iinfo(np.int32).max
|
37 |
MAX_IMAGE_SIZE = 2048
|
38 |
|
39 |
-
def generate_diagram(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4):
|
40 |
-
"""FLUX AI를 사용하여 다이어그램 생성"""
|
41 |
-
try:
|
42 |
-
if randomize_seed:
|
43 |
-
seed = random.randint(0, MAX_SEED)
|
44 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
45 |
-
|
46 |
-
with torch.no_grad():
|
47 |
-
image = pipe(
|
48 |
-
prompt=prompt,
|
49 |
-
width=width,
|
50 |
-
height=height,
|
51 |
-
num_inference_steps=num_inference_steps,
|
52 |
-
generator=generator,
|
53 |
-
guidance_scale=0.0
|
54 |
-
).images[0]
|
55 |
-
|
56 |
-
# 이미지 저장
|
57 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
58 |
-
unique_id = str(uuid.uuid4())[:8]
|
59 |
-
filename = f"diagram_{timestamp}_{unique_id}.png"
|
60 |
-
save_path = os.path.join(SAVE_DIR, filename)
|
61 |
-
image.save(save_path)
|
62 |
-
|
63 |
-
return image, seed
|
64 |
-
|
65 |
-
except Exception as e:
|
66 |
-
raise gr.Error(f"다이어그램 생성 중 오류 발생: {str(e)}")
|
67 |
-
finally:
|
68 |
-
if torch.cuda.is_available():
|
69 |
-
torch.cuda.empty_cache()
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
# Enhanced examples with more detailed prompts and specific styling
|
75 |
EXAMPLES = [
|
76 |
{
|
@@ -272,33 +218,19 @@ GRADIO_EXAMPLES = [
|
|
272 |
for example in EXAMPLES
|
273 |
]
|
274 |
|
275 |
-
def
|
276 |
-
|
277 |
-
try:
|
278 |
-
# 시드 설정
|
279 |
seed = random.randint(0, MAX_SEED)
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
# 이미지 저장
|
292 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
293 |
-
unique_id = str(uuid.uuid4())[:8]
|
294 |
-
filename = f"diagram_{timestamp}_{unique_id}.png"
|
295 |
-
save_path = os.path.join(SAVE_DIR, filename)
|
296 |
-
image.save(save_path)
|
297 |
-
|
298 |
-
return image
|
299 |
-
|
300 |
-
except Exception as e:
|
301 |
-
raise gr.Error(f"다이어그램 생성 중 오류 발생: {str(e)}")
|
302 |
|
303 |
# CSS 스타일
|
304 |
css="""
|
@@ -311,36 +243,37 @@ css="""
|
|
311 |
# Gradio 인터페이스 생성
|
312 |
with gr.Blocks(css=css) as demo:
|
313 |
with gr.Column(elem_id="col-container"):
|
314 |
-
gr.Markdown("""# FLUX
|
315 |
-
|
|
|
316 |
""")
|
317 |
|
318 |
with gr.Row():
|
319 |
prompt = gr.Text(
|
320 |
-
label="
|
321 |
show_label=False,
|
322 |
max_lines=1,
|
323 |
-
placeholder="
|
324 |
container=False,
|
325 |
)
|
326 |
-
run_button = gr.Button("
|
327 |
|
328 |
-
result = gr.Image(label="
|
329 |
|
330 |
-
with gr.Accordion("
|
331 |
seed = gr.Slider(
|
332 |
-
label="
|
333 |
minimum=0,
|
334 |
maximum=MAX_SEED,
|
335 |
step=1,
|
336 |
value=0,
|
337 |
)
|
338 |
|
339 |
-
randomize_seed = gr.Checkbox(label="
|
340 |
|
341 |
with gr.Row():
|
342 |
width = gr.Slider(
|
343 |
-
label="
|
344 |
minimum=256,
|
345 |
maximum=MAX_IMAGE_SIZE,
|
346 |
step=32,
|
@@ -348,7 +281,7 @@ with gr.Blocks(css=css) as demo:
|
|
348 |
)
|
349 |
|
350 |
height = gr.Slider(
|
351 |
-
label="
|
352 |
minimum=256,
|
353 |
maximum=MAX_IMAGE_SIZE,
|
354 |
step=32,
|
@@ -356,26 +289,24 @@ with gr.Blocks(css=css) as demo:
|
|
356 |
)
|
357 |
|
358 |
num_inference_steps = gr.Slider(
|
359 |
-
label="
|
360 |
minimum=1,
|
361 |
maximum=50,
|
362 |
step=1,
|
363 |
value=4,
|
364 |
)
|
365 |
|
366 |
-
# 예제 추가
|
367 |
gr.Examples(
|
368 |
-
examples=
|
369 |
-
fn=
|
370 |
inputs=[prompt],
|
371 |
outputs=[result, seed],
|
372 |
-
cache_examples=
|
373 |
)
|
374 |
|
375 |
-
# 이벤트 핸들러
|
376 |
gr.on(
|
377 |
triggers=[run_button.click, prompt.submit],
|
378 |
-
fn=
|
379 |
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
|
380 |
outputs=[result, seed]
|
381 |
)
|
|
|
3 |
import random
|
4 |
import torch
|
5 |
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# 기본 설정
|
8 |
+
dtype = torch.bfloat16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# 모델 로드
|
12 |
pipe = DiffusionPipeline.from_pretrained(
|
13 |
+
"black-forest-labs/FLUX.1-schnell",
|
14 |
+
torch_dtype=dtype
|
|
|
|
|
15 |
).to(device)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
MAX_IMAGE_SIZE = 2048
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Enhanced examples with more detailed prompts and specific styling
|
21 |
EXAMPLES = [
|
22 |
{
|
|
|
218 |
for example in EXAMPLES
|
219 |
]
|
220 |
|
221 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
222 |
+
if randomize_seed:
|
|
|
|
|
223 |
seed = random.randint(0, MAX_SEED)
|
224 |
+
generator = torch.Generator().manual_seed(seed)
|
225 |
+
image = pipe(
|
226 |
+
prompt=prompt,
|
227 |
+
width=width,
|
228 |
+
height=height,
|
229 |
+
num_inference_steps=num_inference_steps,
|
230 |
+
generator=generator,
|
231 |
+
guidance_scale=0.0
|
232 |
+
).images[0]
|
233 |
+
return image, seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
# CSS 스타일
|
236 |
css="""
|
|
|
243 |
# Gradio 인터페이스 생성
|
244 |
with gr.Blocks(css=css) as demo:
|
245 |
with gr.Column(elem_id="col-container"):
|
246 |
+
gr.Markdown("""# FLUX.1 [schnell]
|
247 |
+
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
|
248 |
+
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
|
249 |
""")
|
250 |
|
251 |
with gr.Row():
|
252 |
prompt = gr.Text(
|
253 |
+
label="Prompt",
|
254 |
show_label=False,
|
255 |
max_lines=1,
|
256 |
+
placeholder="Enter your prompt",
|
257 |
container=False,
|
258 |
)
|
259 |
+
run_button = gr.Button("Run", scale=0)
|
260 |
|
261 |
+
result = gr.Image(label="Result", show_label=False)
|
262 |
|
263 |
+
with gr.Accordion("Advanced Settings", open=False):
|
264 |
seed = gr.Slider(
|
265 |
+
label="Seed",
|
266 |
minimum=0,
|
267 |
maximum=MAX_SEED,
|
268 |
step=1,
|
269 |
value=0,
|
270 |
)
|
271 |
|
272 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
273 |
|
274 |
with gr.Row():
|
275 |
width = gr.Slider(
|
276 |
+
label="Width",
|
277 |
minimum=256,
|
278 |
maximum=MAX_IMAGE_SIZE,
|
279 |
step=32,
|
|
|
281 |
)
|
282 |
|
283 |
height = gr.Slider(
|
284 |
+
label="Height",
|
285 |
minimum=256,
|
286 |
maximum=MAX_IMAGE_SIZE,
|
287 |
step=32,
|
|
|
289 |
)
|
290 |
|
291 |
num_inference_steps = gr.Slider(
|
292 |
+
label="Number of inference steps",
|
293 |
minimum=1,
|
294 |
maximum=50,
|
295 |
step=1,
|
296 |
value=4,
|
297 |
)
|
298 |
|
|
|
299 |
gr.Examples(
|
300 |
+
examples=GRADIO_EXAMPLES,
|
301 |
+
fn=infer,
|
302 |
inputs=[prompt],
|
303 |
outputs=[result, seed],
|
304 |
+
cache_examples="lazy"
|
305 |
)
|
306 |
|
|
|
307 |
gr.on(
|
308 |
triggers=[run_button.click, prompt.submit],
|
309 |
+
fn=infer,
|
310 |
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
|
311 |
outputs=[result, seed]
|
312 |
)
|