import torch from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import numpy as np import os import tempfile import spaces import gradio as gr import subprocess import sys import cv2 import threading import queue import time from collections import deque from deep_translator import GoogleTranslator def install_flash_attn_wheel(): flash_attn_wheel_url = "https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu123torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl" try: subprocess.check_call([sys.executable, "-m", "pip", "install", flash_attn_wheel_url]) print("Wheel installed successfully!") except subprocess.CalledProcessError as e: print(f"Failed to install the flash attnetion wheel. Error: {e}") install_flash_attn_wheel() try: from mmengine.visualization import Visualizer except ImportError: Visualizer = None print("Warning: mmengine is not installed, visualization is disabled.") # Load the model and tokenizer model_path = "ByteDance/Sa2VA-4B" model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype="auto", device_map="cuda:0", trust_remote_code=True, ).eval().cuda() tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code = True, ) class WebcamProcessor: def __init__(self, model, tokenizer, fps_target=15, buffer_size=5): self.model = model self.tokenizer = tokenizer self.fps_target = fps_target self.frame_interval = 1.0 / fps_target self.buffer_size = buffer_size self.frame_buffer = deque(maxlen=buffer_size) self.result_queue = queue.Queue() self.is_running = False self.last_process_time = 0 def start(self): self.is_running = True self.capture = cv2.VideoCapture(0) self.capture_thread = threading.Thread(target=self._capture_loop) self.process_thread = threading.Thread(target=self._process_loop) self.capture_thread.start() self.process_thread.start() def stop(self): self.is_running = False if hasattr(self, 'capture_thread'): self.capture_thread.join() self.process_thread.join() self.capture.release() def _capture_loop(self): while self.is_running: ret, frame = self.capture.read() if ret: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = cv2.resize(frame, (640, 480)) current_time = time.time() if current_time - self.last_process_time >= self.frame_interval: self.frame_buffer.append(frame) self.last_process_time = current_time def _process_loop(self): while self.is_running: if len(self.frame_buffer) >= self.buffer_size: frames = list(self.frame_buffer) try: result = self.model.predict_forward( video=frames, text="Describe what you see", tokenizer=self.tokenizer ) self.result_queue.put(result) except Exception as e: print(f"Processing error: {e}") self.frame_buffer.clear() time.sleep(0.1) from third_parts import VideoReader def read_video(video_path, video_interval): vid_frames = VideoReader(video_path)[::video_interval] temp_dir = tempfile.mkdtemp() os.makedirs(temp_dir, exist_ok=True) image_paths = [] for frame_idx in range(len(vid_frames)): frame_image = vid_frames[frame_idx] frame_image = frame_image[..., ::-1] frame_image = Image.fromarray(frame_image) vid_frames[frame_idx] = frame_image image_path = os.path.join(temp_dir, f"frame_{frame_idx:04d}.jpg") frame_image.save(image_path, format="JPEG") image_paths.append(image_path) return vid_frames, image_paths def visualize(pred_mask, image_path, work_dir): visualizer = Visualizer() img = cv2.imread(image_path) visualizer.set_image(img) visualizer.draw_binary_masks(pred_mask, colors='g', alphas=0.4) visual_result = visualizer.get_image() output_path = os.path.join(work_dir, os.path.basename(image_path)) cv2.imwrite(output_path, visual_result) return output_path def translate_to_korean(text): try: translator = GoogleTranslator(source='en', target='ko') return translator.translate(text) except Exception as e: print(f"Translation error: {e}") return text @spaces.GPU def image_vision(image_input_path, prompt): is_korean = any(ord('가') <= ord(char) <= ord('힣') for char in prompt) image_path = image_input_path text_prompts = f"{prompt}" image = Image.open(image_path).convert('RGB') input_dict = { 'image': image, 'text': text_prompts, 'past_text': '', 'mask_prompts': None, 'tokenizer': tokenizer, } return_dict = model.predict_forward(**input_dict) print(return_dict) answer = return_dict["prediction"] if is_korean: if '[SEG]' in answer: parts = answer.split('[SEG]') translated_parts = [translate_to_korean(part.strip()) for part in parts] answer = '[SEG]'.join(translated_parts) else: answer = translate_to_korean(answer) seg_image = return_dict["prediction_masks"] if '[SEG]' in answer and Visualizer is not None: pred_masks = seg_image[0] temp_dir = tempfile.mkdtemp() pred_mask = pred_masks os.makedirs(temp_dir, exist_ok=True) seg_result = visualize(pred_mask, image_input_path, temp_dir) return answer, seg_result else: return answer, None @spaces.GPU(duration=80) def video_vision(video_input_path, prompt, video_interval): is_korean = any(ord('가') <= ord(char) <= ord('힣') for char in prompt) cap = cv2.VideoCapture(video_input_path) original_fps = cap.get(cv2.CAP_PROP_FPS) frame_skip_factor = video_interval new_fps = original_fps / frame_skip_factor vid_frames, image_paths = read_video(video_input_path, video_interval) question = f"{prompt}" result = model.predict_forward( video=vid_frames, text=question, tokenizer=tokenizer, ) prediction = result['prediction'] print(prediction) if is_korean: if '[SEG]' in prediction: parts = prediction.split('[SEG]') translated_parts = [translate_to_korean(part.strip()) for part in parts] prediction = '[SEG]'.join(translated_parts) else: prediction = translate_to_korean(prediction) if '[SEG]' in prediction and Visualizer is not None: _seg_idx = 0 pred_masks = result['prediction_masks'][_seg_idx] seg_frames = [] for frame_idx in range(len(vid_frames)): pred_mask = pred_masks[frame_idx] temp_dir = tempfile.mkdtemp() os.makedirs(temp_dir, exist_ok=True) seg_frame = visualize(pred_mask, image_paths[frame_idx], temp_dir) seg_frames.append(seg_frame) output_video = "output_video.mp4" frame = cv2.imread(seg_frames[0]) height, width, layers = frame.shape fourcc = cv2.VideoWriter_fourcc(*'mp4v') video = cv2.VideoWriter(output_video, fourcc, new_fps, (width, height)) for img_path in seg_frames: frame = cv2.imread(img_path) video.write(frame) video.release() print(f"Video created successfully at {output_video}") return prediction, output_video else: return prediction, None @spaces.GPU def webcam_vision(prompt): is_korean = any(ord('가') <= ord(char) <= ord('힣') for char in prompt) if not hasattr(webcam_vision, 'processor'): webcam_vision.processor = WebcamProcessor(model, tokenizer) if not webcam_vision.processor.is_running: webcam_vision.processor.start() try: result = webcam_vision.processor.result_queue.get(timeout=5) prediction = result['prediction'] if is_korean: prediction = translate_to_korean(prediction) return prediction except queue.Empty: return "No results available yet" except Exception as e: return f"Error: {str(e)}" # Gradio UI with gr.Blocks(analytics_enabled=False) as demo: with gr.Column(): gr.Markdown("# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos") with gr.Tab("Single Image"): with gr.Row(): with gr.Column(): image_input = gr.Image(label="Image IN", type="filepath") with gr.Row(): instruction = gr.Textbox(label="Instruction", scale=4) submit_image_btn = gr.Button("Submit", scale=1) with gr.Column(): output_res = gr.Textbox(label="Response") output_image = gr.Image(label="Segmentation", type="numpy") submit_image_btn.click( fn = image_vision, inputs = [image_input, instruction], outputs = [output_res, output_image] ) with gr.Tab("Video"): with gr.Row(): with gr.Column(): video_input = gr.Video(label="Video IN") frame_interval = gr.Slider(label="Frame interval", step=1, minimum=1, maximum=12, value=6) with gr.Row(): vid_instruction = gr.Textbox(label="Instruction", scale=4) submit_video_btn = gr.Button("Submit", scale=1) with gr.Column(): vid_output_res = gr.Textbox(label="Response") output_video = gr.Video(label="Segmentation") submit_video_btn.click( fn = video_vision, inputs = [video_input, vid_instruction, frame_interval], outputs = [vid_output_res, output_video] ) with gr.Tab("Webcam"): with gr.Row(): with gr.Column(): webcam_input = gr.Image(source="webcam", streaming=True) with gr.Row(): webcam_instruction = gr.Textbox( label="Instruction", placeholder="Enter instruction here...", scale=4 ) start_button = gr.Button("Start", scale=1) stop_button = gr.Button("Stop", scale=1) with gr.Column(): webcam_output = gr.Textbox(label="Response") processed_view = gr.Image(label="Processed View") status_text = gr.Textbox(label="Status", value="Ready") start_button.click( fn=lambda x: webcam_vision(x), inputs=[webcam_instruction], outputs=[webcam_output] ) stop_button.click( fn=lambda: "Stopped" if hasattr(webcam_vision, 'processor') and webcam_vision.processor.stop() else "Not running", outputs=[status_text] ) demo.queue().launch(show_api=False, show_error=True)