aiqcamp's picture
Update app.py
5fdd7dd verified
raw
history blame
7.01 kB
import os
import gradio as gr
from gradio import ChatMessage
from typing import Iterator
import google.generativeai as genai
# get Gemini API Key from the environ variable
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
# we will be using the Gemini 2.0 Flash model with Thinking capabilities
model = genai.GenerativeModel("gemini-2.0-flash-thinking-exp-1219")
def format_chat_history(messages: list) -> list:
"""
Formats the chat history into a structure Gemini can understand
"""
formatted_history = []
for message in messages:
# Skip thinking messages (messages with metadata)
if not (message.get("role") == "assistant" and "metadata" in message):
formatted_history.append({
"role": "user" if message.get("role") == "user" else "assistant",
"parts": [message.get("content", "")]
})
return formatted_history
def stream_gemini_response(user_message: str, messages: list) -> Iterator[list]:
"""
Streams thoughts and response with conversation history support.
"""
try:
print(f"\n=== New Request ===")
print(f"User message: {user_message}")
# Format chat history for Gemini
chat_history = format_chat_history(messages)
# Initialize Gemini chat
chat = model.start_chat(history=chat_history)
response = chat.send_message(user_message, stream=True)
# Initialize buffers and flags
thought_buffer = ""
response_buffer = ""
thinking_complete = False
# Add initial thinking message
messages.append(
ChatMessage(
role="assistant",
content="",
metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
)
)
for chunk in response:
parts = chunk.candidates[0].content.parts
current_chunk = parts[0].text
if len(parts) == 2 and not thinking_complete:
# Complete thought and start response
thought_buffer += current_chunk
print(f"\n=== Complete Thought ===\n{thought_buffer}")
messages[-1] = ChatMessage(
role="assistant",
content=thought_buffer,
metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
)
yield messages
# Start response
response_buffer = parts[1].text
print(f"\n=== Starting Response ===\n{response_buffer}")
messages.append(
ChatMessage(
role="assistant",
content=response_buffer
)
)
thinking_complete = True
elif thinking_complete:
# Stream response
response_buffer += current_chunk
print(f"\n=== Response Chunk ===\n{current_chunk}")
messages[-1] = ChatMessage(
role="assistant",
content=response_buffer
)
else:
# Stream thinking
thought_buffer += current_chunk
print(f"\n=== Thinking Chunk ===\n{current_chunk}")
messages[-1] = ChatMessage(
role="assistant",
content=thought_buffer,
metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
)
yield messages
print(f"\n=== Final Response ===\n{response_buffer}")
except Exception as e:
print(f"\n=== Error ===\n{str(e)}")
messages.append(
ChatMessage(
role="assistant",
content=f"I apologize, but I encountered an error: {str(e)}"
)
)
yield messages
def user_message(msg: str, history: list) -> tuple[str, list]:
"""Adds user message to chat history"""
history.append(ChatMessage(role="user", content=msg))
return "", history
# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="slate", neutral_hue="neutral")) as demo: # Using Soft theme with adjusted hues for a refined look
gr.Markdown("# Gemini 2.0 Flash 'Thinking' Chatbot 💭")
chatbot = gr.Chatbot(
type="messages",
label="Gemini2.0 'Thinking' Chatbot",
render_markdown=True,
scale=1,
avatar_images=(None,"https://lh3.googleusercontent.com/oxz0sUBF0iYoN4VvhqWTmux-cxfD1rxuYkuFEfm1SFaseXEsjjE4Je_C_V3UQPuJ87sImQK3HfQ3RXiaRnQetjaZbjJJUkiPL5jFJ1WRl5FKJZYibUA=w214-h214-n-nu")
)
with gr.Row(equal_height=True):
input_box = gr.Textbox(
lines=1,
label="Chat Message",
placeholder="Type your message here...",
scale=4
)
clear_button = gr.Button("Clear Chat", scale=1)
# Set up event handlers
msg_store = gr.State("") # Store for preserving user message
input_box.submit(
lambda msg: (msg, msg, ""), # Store message and clear input
inputs=[input_box],
outputs=[msg_store, input_box, input_box],
queue=False
).then(
user_message, # Add user message to chat
inputs=[msg_store, chatbot],
outputs=[input_box, chatbot],
queue=False
).then(
stream_gemini_response, # Generate and stream response
inputs=[msg_store, chatbot],
outputs=chatbot
)
clear_button.click(
lambda: ([], "", ""),
outputs=[chatbot, input_box, msg_store],
queue=False
)
gr.Markdown( # Description moved to the bottom
"""
<br><br><br> <!-- Add some vertical space -->
---
### About this Chatbot
This chatbot demonstrates the experimental 'thinking' capability of the **Gemini 2.0 Flash** model.
You can observe the model's thought process as it generates responses, displayed with the "⚙️ Thinking" prefix.
**Key Features:**
* Powered by Google's **Gemini 2.0 Flash** model.
* Shows the model's **thoughts** before the final answer (experimental feature).
* Supports **conversation history** for multi-turn chats.
* Uses **streaming** for a more interactive experience.
**Instructions:**
1. Type your message in the input box below.
2. Press Enter or click Submit to send.
3. Observe the chatbot's "Thinking" process followed by the final response.
4. Use the "Clear Chat" button to start a new conversation.
*Please note*: The 'thinking' feature is experimental and the quality of thoughts may vary.
"""
)
# Launch the interface
if __name__ == "__main__":
demo.launch(debug=True)