File size: 8,687 Bytes
eb8806e
 
 
 
 
9cb71c2
eb8806e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45e9cef
eb8806e
45e9cef
eb8806e
45e9cef
 
9cb71c2
 
 
 
45e9cef
 
 
eb8806e
 
 
 
 
45e9cef
eb8806e
45e9cef
eb8806e
 
 
 
45e9cef
eb8806e
 
 
 
 
 
 
 
45e9cef
eb8806e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cb71c2
eb8806e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45e9cef
eb8806e
45e9cef
 
 
eb8806e
 
45e9cef
 
eb8806e
4eb8efe
 
 
 
 
 
eb8806e
 
9cb71c2
eb8806e
 
 
 
 
 
 
 
 
 
45e9cef
eb8806e
 
 
 
45e9cef
5a1d31c
 
 
 
 
 
 
 
 
 
45e9cef
 
5a1d31c
 
 
 
eb8806e
 
 
 
45e9cef
 
 
eb8806e
 
45e9cef
 
 
eb8806e
 
45e9cef
 
eb8806e
 
 
 
 
 
 
 
 
45e9cef
eb8806e
 
 
 
 
 
5a1d31c
 
 
eb8806e
 
 
 
 
 
45e9cef
 
eb8806e
 
5a1d31c
45e9cef
eb8806e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import gradio as gr
from gradio import ChatMessage
from typing import Iterator
import google.generativeai as genai
import time # Import time module for potential debugging/delay

# get Gemini API Key from the environ variable
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)

# we will be using the Gemini 2.0 Flash model with Thinking capabilities
model = genai.GenerativeModel("gemini-2.0-flash-thinking-exp-1219")


def format_chat_history(messages: list) -> list:
    """
    Formats the chat history into a structure Gemini can understand
    """
    formatted_history = []
    for message in messages:
        # Skip thinking messages (messages with metadata)
        if not (message.get("role") == "assistant" and "metadata" in message):
            formatted_history.append({
                "role": "user" if message.get("role") == "user" else "assistant",
                "parts": [message.get("content", "")]
            })
    return formatted_history

def stream_gemini_response(user_message: str, messages: list) -> Iterator[list]:
    """
    Streams thoughts and response with conversation history support for text input only.
    """
    if not user_message.strip(): # Robust check: if text message is empty or whitespace
        messages.append(ChatMessage(role="assistant", content="Please provide a non-empty text message. Empty input is not allowed.")) # More specific message
        yield messages
        return

    try:
        print(f"\n=== New Request (Text) ===")
        print(f"User message: {user_message}")

        # Format chat history for Gemini
        chat_history = format_chat_history(messages)

        # Initialize Gemini chat
        chat = model.start_chat(history=chat_history)
        response = chat.send_message(user_message, stream=True)

        # Initialize buffers and flags
        thought_buffer = ""
        response_buffer = ""
        thinking_complete = False

        # Add initial thinking message
        messages.append(
            ChatMessage(
                role="assistant",
                content="",
                metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
            )
        )

        for chunk in response:
            parts = chunk.candidates[0].content.parts
            current_chunk = parts[0].text

            if len(parts) == 2 and not thinking_complete:
                # Complete thought and start response
                thought_buffer += current_chunk
                print(f"\n=== Complete Thought ===\n{thought_buffer}")

                messages[-1] = ChatMessage(
                    role="assistant",
                    content=thought_buffer,
                    metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
                )
                yield messages

                # Start response
                response_buffer = parts[1].text
                print(f"\n=== Starting Response ===\n{response_buffer}")

                messages.append(
                    ChatMessage(
                        role="assistant",
                        content=response_buffer
                    )
                )
                thinking_complete = True

            elif thinking_complete:
                # Stream response
                response_buffer += current_chunk
                print(f"\n=== Response Chunk ===\n{current_chunk}")

                messages[-1] = ChatMessage(
                    role="assistant",
                    content=response_buffer
                )

            else:
                # Stream thinking
                thought_buffer += current_chunk
                print(f"\n=== Thinking Chunk ===\n{current_chunk}")

                messages[-1] = ChatMessage(
                    role="assistant",
                    content=thought_buffer,
                    metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
                )
            #time.sleep(0.05) #Optional: Uncomment this line to add a slight delay for debugging/visualization of streaming. Remove for final version

            yield messages

        print(f"\n=== Final Response ===\n{response_buffer}")

    except Exception as e:
        print(f"\n=== Error ===\n{str(e)}")
        messages.append(
            ChatMessage(
                role="assistant",
                content=f"I apologize, but I encountered an error: {str(e)}"
            )
        )
        yield messages

def user_message(msg: str, history: list) -> tuple[str, list]:
    """Adds user message to chat history"""
    history.append(ChatMessage(role="user", content=msg))
    return "", history


# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="slate", neutral_hue="neutral")) as demo: # Using Soft theme with adjusted hues for a refined look
    gr.Markdown("# Chat with Gemini 2.0 Flash and See its Thoughts 💭")

    
    gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Faiqcamp-Gemini2-Flash-Thinking.hf.space">
               <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Faiqcamp-Gemini2-Flash-Thinking.hf.space&countColor=%23263759" />
               </a>""")

    
    chatbot = gr.Chatbot(
        type="messages",
        label="Gemini2.0 'Thinking' Chatbot (Streaming Output)", #Label now indicates streaming
        render_markdown=True,
        scale=1,
        avatar_images=(None,"https://lh3.googleusercontent.com/oxz0sUBF0iYoN4VvhqWTmux-cxfD1rxuYkuFEfm1SFaseXEsjjE4Je_C_V3UQPuJ87sImQK3HfQ3RXiaRnQetjaZbjJJUkiPL5jFJ1WRl5FKJZYibUA=w214-h214-n-nu")
    )

    with gr.Row(equal_height=True):
        input_box = gr.Textbox(
            lines=1,
            label="Chat Message",
            placeholder="Type your message here...",
            scale=4
        )

        clear_button = gr.Button("Clear Chat", scale=1)

    # Add example prompts - removed file upload examples. Kept text focused examples.
    example_prompts = [
        ["Write a short poem about the sunset."],
        ["Explain the theory of relativity in simple terms."],
        ["If a train leaves Chicago at 6am traveling at 60mph, and another train leaves New York at 8am traveling at 80mph, at what time will they meet?"],
        ["Summarize the plot of Hamlet."],
        ["Write a haiku about a cat."]
    ]

    gr.Examples(
        examples=example_prompts,
        inputs=input_box,
        label="Examples: Try these prompts to see Gemini's thinking!",
        examples_per_page=5 # Adjust as needed
    )


    # Set up event handlers
    msg_store = gr.State("")  # Store for preserving user message

    input_box.submit(
        lambda msg: (msg, msg, ""),  # Store message and clear input
        inputs=[input_box],
        outputs=[msg_store, input_box, input_box],
        queue=False
    ).then(
        user_message,  # Add user message to chat
        inputs=[msg_store, chatbot],
        outputs=[input_box, chatbot],
        queue=False
    ).then(
        stream_gemini_response,  # Generate and stream response
        inputs=[msg_store, chatbot],
        outputs=chatbot
    )

    clear_button.click(
        lambda: ([], "", ""),
        outputs=[chatbot, input_box, msg_store],
        queue=False
    )

    gr.Markdown(  # Description moved to the bottom - updated for text-only
        """
        <br><br><br>  <!-- Add some vertical space -->
        ---
        ### About this Chatbot
        This chatbot demonstrates the experimental 'thinking' capability of the **Gemini 2.0 Flash** model.
        You can observe the model's thought process as it generates responses, displayed with the "⚙️ Thinking" prefix.

        **Try out the example prompts below to see Gemini in action!**

        **Key Features:**
        *   Powered by Google's **Gemini 2.0 Flash** model.
        *   Shows the model's **thoughts** before the final answer (experimental feature).
        *   Supports **conversation history** for multi-turn chats.
        *   Uses **streaming** for a more interactive experience.
        **Instructions:**
        1.  Type your message in the input box below or select an example.
        2.  Press Enter or click Submit to send.
        3.  Observe the chatbot's "Thinking" process followed by the final response.
        4.  Use the "Clear Chat" button to start a new conversation.

        *Please note*: The 'thinking' feature is experimental and the quality of thoughts may vary.
        """
    )


# Launch the interface
if __name__ == "__main__":
    demo.launch(debug=True)