Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,57 @@
|
|
1 |
import gradio as gr
|
2 |
import monai
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
demo = gr.Interface(
|
9 |
fn=greet,
|
10 |
-
title="
|
11 |
-
inputs=[
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
)
|
14 |
|
15 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import monai
|
3 |
import torch
|
4 |
+
from monai.networks.nets import UNet
|
5 |
+
from PIL import Image
|
6 |
+
import albumentations as A
|
7 |
+
from albumentations.pytorch import ToTensorV2
|
8 |
+
import numpy as np
|
9 |
|
10 |
+
|
11 |
+
model = UNet(
|
12 |
+
spatial_dims=2,
|
13 |
+
in_channels=3,
|
14 |
+
out_channels=1,
|
15 |
+
channels=[16, 32, 64, 128, 256, 512],
|
16 |
+
strides=(2, 2, 2, 2, 2),
|
17 |
+
num_res_units=4,
|
18 |
+
dropout=0.15,
|
19 |
+
)
|
20 |
+
model.load_state_dict(torch.load("best_model.pth"))
|
21 |
+
model.eval()
|
22 |
+
|
23 |
+
def greet(image_path):
|
24 |
+
|
25 |
+
|
26 |
+
image = Image.open(image_path).convert("RGB")
|
27 |
+
image = np.array(image) / 255.0
|
28 |
+
image = image.astype(np.float32)
|
29 |
+
|
30 |
+
inference_transforms = A.Compose([
|
31 |
+
A.Resize(height=512, width=512),
|
32 |
+
ToTensorV2(),
|
33 |
+
])
|
34 |
+
|
35 |
+
image = inference_transforms(image=image)["image"]
|
36 |
+
|
37 |
+
image = image.unsqueeze(0)
|
38 |
+
|
39 |
+
|
40 |
+
with torch.no_grad():
|
41 |
+
mask_pred = model(image)
|
42 |
+
|
43 |
+
return mask_pred[0]
|
44 |
+
|
45 |
|
46 |
demo = gr.Interface(
|
47 |
fn=greet,
|
48 |
+
title="Histapathology segmentation",
|
49 |
+
inputs=[
|
50 |
+
gr.File(label="Input image (512x512)")
|
51 |
+
],
|
52 |
+
outputs=[
|
53 |
+
gr.File(label="Model Prediction")
|
54 |
+
],
|
55 |
)
|
56 |
|
57 |
demo.launch()
|