Spaces:
Runtime error
Runtime error
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from networks.layers.basic import DropOutLogit, ScaleOffset, DWConv2d | |
| def multiply_by_ychunks(x, y, chunks=1): | |
| if chunks <= 1: | |
| return x @ y | |
| else: | |
| return torch.cat([x @ _y for _y in y.chunk(chunks, dim=-1)], dim=-1) | |
| def multiply_by_xchunks(x, y, chunks=1): | |
| if chunks <= 1: | |
| return x @ y | |
| else: | |
| return torch.cat([_x @ y for _x in x.chunk(chunks, dim=-2)], dim=-2) | |
| # Long-term attention | |
| class MultiheadAttention(nn.Module): | |
| def __init__(self, | |
| d_model, | |
| num_head=8, | |
| dropout=0., | |
| use_linear=True, | |
| d_att=None, | |
| use_dis=False, | |
| qk_chunks=1, | |
| max_mem_len_ratio=-1, | |
| top_k=-1): | |
| super().__init__() | |
| self.d_model = d_model | |
| self.num_head = num_head | |
| self.use_dis = use_dis | |
| self.qk_chunks = qk_chunks | |
| self.max_mem_len_ratio = float(max_mem_len_ratio) | |
| self.top_k = top_k | |
| self.hidden_dim = d_model // num_head | |
| self.d_att = self.hidden_dim if d_att is None else d_att | |
| self.T = self.d_att**0.5 | |
| self.use_linear = use_linear | |
| if use_linear: | |
| self.linear_Q = nn.Linear(d_model, d_model) | |
| self.linear_K = nn.Linear(d_model, d_model) | |
| self.linear_V = nn.Linear(d_model, d_model) | |
| self.dropout = nn.Dropout(dropout) | |
| self.drop_prob = dropout | |
| self.projection = nn.Linear(d_model, d_model) | |
| self._init_weight() | |
| def forward(self, Q, K, V): | |
| """ | |
| :param Q: A 3d tensor with shape of [T_q, bs, C_q] | |
| :param K: A 3d tensor with shape of [T_k, bs, C_k] | |
| :param V: A 3d tensor with shape of [T_v, bs, C_v] | |
| """ | |
| num_head = self.num_head | |
| hidden_dim = self.hidden_dim | |
| bs = Q.size()[1] | |
| # Linear projections | |
| if self.use_linear: | |
| Q = self.linear_Q(Q) | |
| K = self.linear_K(K) | |
| V = self.linear_V(V) | |
| # Scale | |
| Q = Q / self.T | |
| if not self.training and self.max_mem_len_ratio > 0: | |
| mem_len_ratio = float(K.size(0)) / Q.size(0) | |
| if mem_len_ratio > self.max_mem_len_ratio: | |
| scaling_ratio = math.log(mem_len_ratio) / math.log( | |
| self.max_mem_len_ratio) | |
| Q = Q * scaling_ratio | |
| # Multi-head | |
| Q = Q.view(-1, bs, num_head, self.d_att).permute(1, 2, 0, 3) | |
| K = K.view(-1, bs, num_head, self.d_att).permute(1, 2, 3, 0) | |
| V = V.view(-1, bs, num_head, hidden_dim).permute(1, 2, 0, 3) | |
| # Multiplication | |
| QK = multiply_by_ychunks(Q, K, self.qk_chunks) | |
| if self.use_dis: | |
| QK = 2 * QK - K.pow(2).sum(dim=-2, keepdim=True) | |
| # Activation | |
| if not self.training and self.top_k > 0 and self.top_k < QK.size()[-1]: | |
| top_QK, indices = torch.topk(QK, k=self.top_k, dim=-1) | |
| top_attn = torch.softmax(top_QK, dim=-1) | |
| attn = torch.zeros_like(QK).scatter_(-1, indices, top_attn) | |
| else: | |
| attn = torch.softmax(QK, dim=-1) | |
| # Dropouts | |
| attn = self.dropout(attn) | |
| # Weighted sum | |
| outputs = multiply_by_xchunks(attn, V, | |
| self.qk_chunks).permute(2, 0, 1, 3) | |
| # Restore shape | |
| outputs = outputs.reshape(-1, bs, self.d_model) | |
| outputs = self.projection(outputs) | |
| return outputs, attn | |
| def _init_weight(self): | |
| for p in self.parameters(): | |
| if p.dim() > 1: | |
| nn.init.xavier_uniform_(p) | |
| # Short-term attention | |
| class MultiheadLocalAttentionV1(nn.Module): | |
| def __init__(self, | |
| d_model, | |
| num_head, | |
| dropout=0., | |
| max_dis=7, | |
| dilation=1, | |
| use_linear=True, | |
| enable_corr=True): | |
| super().__init__() | |
| self.dilation = dilation | |
| self.window_size = 2 * max_dis + 1 | |
| self.max_dis = max_dis | |
| self.num_head = num_head | |
| self.T = ((d_model / num_head)**0.5) | |
| self.use_linear = use_linear | |
| if use_linear: | |
| self.linear_Q = nn.Conv2d(d_model, d_model, kernel_size=1) | |
| self.linear_K = nn.Conv2d(d_model, d_model, kernel_size=1) | |
| self.linear_V = nn.Conv2d(d_model, d_model, kernel_size=1) | |
| self.relative_emb_k = nn.Conv2d(d_model, | |
| num_head * self.window_size * | |
| self.window_size, | |
| kernel_size=1, | |
| groups=num_head) | |
| self.relative_emb_v = nn.Parameter( | |
| torch.zeros([ | |
| self.num_head, d_model // self.num_head, | |
| self.window_size * self.window_size | |
| ])) | |
| self.enable_corr = enable_corr | |
| if enable_corr: | |
| from spatial_correlation_sampler import SpatialCorrelationSampler | |
| self.correlation_sampler = SpatialCorrelationSampler( | |
| kernel_size=1, | |
| patch_size=self.window_size, | |
| stride=1, | |
| padding=0, | |
| dilation=1, | |
| dilation_patch=self.dilation) | |
| self.projection = nn.Linear(d_model, d_model) | |
| self.dropout = nn.Dropout(dropout) | |
| self.drop_prob = dropout | |
| def forward(self, q, k, v): | |
| n, c, h, w = v.size() | |
| if self.use_linear: | |
| q = self.linear_Q(q) | |
| k = self.linear_K(k) | |
| v = self.linear_V(v) | |
| hidden_dim = c // self.num_head | |
| relative_emb = self.relative_emb_k(q) | |
| memory_mask = torch.ones((1, 1, h, w), device=v.device).float() | |
| # Scale | |
| q = q / self.T | |
| q = q.view(-1, hidden_dim, h, w) | |
| k = k.reshape(-1, hidden_dim, h, w).contiguous() | |
| unfolded_vu = self.pad_and_unfold(v).view( | |
| n, self.num_head, hidden_dim, self.window_size * self.window_size, | |
| h * w) + self.relative_emb_v.unsqueeze(0).unsqueeze(-1) | |
| relative_emb = relative_emb.view(n, self.num_head, | |
| self.window_size * self.window_size, | |
| h * w) | |
| unfolded_k_mask = self.pad_and_unfold(memory_mask).bool().view( | |
| 1, 1, self.window_size * self.window_size, | |
| h * w).expand(n, self.num_head, -1, -1) | |
| if self.enable_corr: | |
| qk = self.correlation_sampler(q, k).view( | |
| n, self.num_head, self.window_size * self.window_size, | |
| h * w) + relative_emb | |
| else: | |
| unfolded_k = self.pad_and_unfold(k).view( | |
| n * self.num_head, hidden_dim, | |
| self.window_size * self.window_size, h, w) | |
| qk = (q.unsqueeze(2) * unfolded_k).sum(dim=1).view( | |
| n, self.num_head, self.window_size * self.window_size, | |
| h * w) + relative_emb | |
| qk_mask = 1 - unfolded_k_mask | |
| qk -= qk_mask * 1e+8 if qk.dtype == torch.float32 else qk_mask * 1e+4 | |
| local_attn = torch.softmax(qk, dim=2) | |
| local_attn = self.dropout(local_attn) | |
| output = (local_attn.unsqueeze(2) * unfolded_vu).sum(dim=3).permute( | |
| 3, 0, 1, 2).view(h * w, n, c) | |
| output = self.projection(output) | |
| return output, local_attn | |
| def pad_and_unfold(self, x): | |
| pad_pixel = self.max_dis * self.dilation | |
| x = F.pad(x, (pad_pixel, pad_pixel, pad_pixel, pad_pixel), | |
| mode='constant', | |
| value=0) | |
| x = F.unfold(x, | |
| kernel_size=(self.window_size, self.window_size), | |
| stride=(1, 1), | |
| dilation=self.dilation) | |
| return x | |
| class MultiheadLocalAttentionV2(nn.Module): | |
| def __init__(self, | |
| d_model, | |
| num_head, | |
| dropout=0., | |
| max_dis=7, | |
| dilation=1, | |
| use_linear=True, | |
| enable_corr=True, | |
| d_att=None, | |
| use_dis=False): | |
| super().__init__() | |
| self.dilation = dilation | |
| self.window_size = 2 * max_dis + 1 | |
| self.max_dis = max_dis | |
| self.num_head = num_head | |
| self.hidden_dim = d_model // num_head | |
| self.d_att = self.hidden_dim if d_att is None else d_att | |
| self.T = self.d_att**0.5 | |
| self.use_dis = use_dis | |
| self.use_linear = use_linear | |
| if use_linear: | |
| self.linear_Q = nn.Conv2d(d_model, d_model, kernel_size=1) | |
| self.linear_K = nn.Conv2d(d_model, d_model, kernel_size=1) | |
| self.linear_V = nn.Conv2d(d_model, d_model, kernel_size=1) | |
| self.relative_emb_k = nn.Conv2d(self.d_att * self.num_head, | |
| num_head * self.window_size * | |
| self.window_size, | |
| kernel_size=1, | |
| groups=num_head) | |
| self.relative_emb_v = nn.Parameter( | |
| torch.zeros([ | |
| self.num_head, d_model // self.num_head, | |
| self.window_size * self.window_size | |
| ])) | |
| self.enable_corr = enable_corr | |
| if enable_corr: | |
| from spatial_correlation_sampler import SpatialCorrelationSampler | |
| self.correlation_sampler = SpatialCorrelationSampler( | |
| kernel_size=1, | |
| patch_size=self.window_size, | |
| stride=1, | |
| padding=0, | |
| dilation=1, | |
| dilation_patch=self.dilation) | |
| self.projection = nn.Linear(d_model, d_model) | |
| self.dropout = nn.Dropout(dropout) | |
| self.drop_prob = dropout | |
| self.local_mask = None | |
| self.last_size_2d = None | |
| self.qk_mask = None | |
| def forward(self, q, k, v): | |
| n, c, h, w = v.size() | |
| if self.use_linear: | |
| q = self.linear_Q(q) | |
| k = self.linear_K(k) | |
| v = self.linear_V(v) | |
| hidden_dim = self.hidden_dim | |
| if self.qk_mask is not None and (h, w) == self.last_size_2d: | |
| qk_mask = self.qk_mask | |
| else: | |
| memory_mask = torch.ones((1, 1, h, w), device=v.device).float() | |
| unfolded_k_mask = self.pad_and_unfold(memory_mask).view( | |
| 1, 1, self.window_size * self.window_size, h * w) | |
| qk_mask = 1 - unfolded_k_mask | |
| self.qk_mask = qk_mask | |
| relative_emb = self.relative_emb_k(q) | |
| # Scale | |
| q = q / self.T | |
| q = q.view(-1, self.d_att, h, w) | |
| k = k.view(-1, self.d_att, h, w) | |
| v = v.view(-1, self.num_head, hidden_dim, h * w) | |
| relative_emb = relative_emb.view(n, self.num_head, | |
| self.window_size * self.window_size, | |
| h * w) | |
| if self.enable_corr: | |
| qk = self.correlation_sampler(q, k).view( | |
| n, self.num_head, self.window_size * self.window_size, h * w) | |
| else: | |
| unfolded_k = self.pad_and_unfold(k).view( | |
| n * self.num_head, hidden_dim, | |
| self.window_size * self.window_size, h, w) | |
| qk = (q.unsqueeze(2) * unfolded_k).sum(dim=1).view( | |
| n, self.num_head, self.window_size * self.window_size, h * w) | |
| if self.use_dis: | |
| qk = 2 * qk - self.pad_and_unfold( | |
| k.pow(2).sum(dim=1, keepdim=True)).view( | |
| n, self.num_head, self.window_size * self.window_size, | |
| h * w) | |
| qk = qk + relative_emb | |
| qk -= qk_mask * 1e+8 if qk.dtype == torch.float32 else qk_mask * 1e+4 | |
| local_attn = torch.softmax(qk, dim=2) | |
| local_attn = self.dropout(local_attn) | |
| agg_bias = torch.einsum('bhwn,hcw->bhnc', local_attn, | |
| self.relative_emb_v) | |
| global_attn = self.local2global(local_attn, h, w) | |
| agg_value = (global_attn @ v.transpose(-2, -1)) | |
| output = (agg_value + agg_bias).permute(2, 0, 1, | |
| 3).reshape(h * w, n, c) | |
| output = self.projection(output) | |
| self.last_size_2d = (h, w) | |
| return output, local_attn | |
| def local2global(self, local_attn, height, width): | |
| batch_size = local_attn.size()[0] | |
| pad_height = height + 2 * self.max_dis | |
| pad_width = width + 2 * self.max_dis | |
| if self.local_mask is not None and (height, | |
| width) == self.last_size_2d: | |
| local_mask = self.local_mask | |
| else: | |
| ky, kx = torch.meshgrid([ | |
| torch.arange(0, pad_height, device=local_attn.device), | |
| torch.arange(0, pad_width, device=local_attn.device) | |
| ]) | |
| qy, qx = torch.meshgrid([ | |
| torch.arange(0, height, device=local_attn.device), | |
| torch.arange(0, width, device=local_attn.device) | |
| ]) | |
| offset_y = qy.reshape(-1, 1) - ky.reshape(1, -1) + self.max_dis | |
| offset_x = qx.reshape(-1, 1) - kx.reshape(1, -1) + self.max_dis | |
| local_mask = (offset_y.abs() <= self.max_dis) & (offset_x.abs() <= | |
| self.max_dis) | |
| local_mask = local_mask.view(1, 1, height * width, pad_height, | |
| pad_width) | |
| self.local_mask = local_mask | |
| global_attn = torch.zeros( | |
| (batch_size, self.num_head, height * width, pad_height, pad_width), | |
| device=local_attn.device) | |
| global_attn[local_mask.expand(batch_size, self.num_head, | |
| -1, -1, -1)] = local_attn.transpose( | |
| -1, -2).reshape(-1) | |
| global_attn = global_attn[:, :, :, self.max_dis:-self.max_dis, | |
| self.max_dis:-self.max_dis].reshape( | |
| batch_size, self.num_head, | |
| height * width, height * width) | |
| return global_attn | |
| def pad_and_unfold(self, x): | |
| pad_pixel = self.max_dis * self.dilation | |
| x = F.pad(x, (pad_pixel, pad_pixel, pad_pixel, pad_pixel), | |
| mode='constant', | |
| value=0) | |
| x = F.unfold(x, | |
| kernel_size=(self.window_size, self.window_size), | |
| stride=(1, 1), | |
| dilation=self.dilation) | |
| return x | |
| class MultiheadLocalAttentionV3(nn.Module): | |
| def __init__(self, | |
| d_model, | |
| num_head, | |
| dropout=0., | |
| max_dis=7, | |
| dilation=1, | |
| use_linear=True): | |
| super().__init__() | |
| self.dilation = dilation | |
| self.window_size = 2 * max_dis + 1 | |
| self.max_dis = max_dis | |
| self.num_head = num_head | |
| self.T = ((d_model / num_head)**0.5) | |
| self.use_linear = use_linear | |
| if use_linear: | |
| self.linear_Q = nn.Conv2d(d_model, d_model, kernel_size=1) | |
| self.linear_K = nn.Conv2d(d_model, d_model, kernel_size=1) | |
| self.linear_V = nn.Conv2d(d_model, d_model, kernel_size=1) | |
| self.relative_emb_k = nn.Conv2d(d_model, | |
| num_head * self.window_size * | |
| self.window_size, | |
| kernel_size=1, | |
| groups=num_head) | |
| self.relative_emb_v = nn.Parameter( | |
| torch.zeros([ | |
| self.num_head, d_model // self.num_head, | |
| self.window_size * self.window_size | |
| ])) | |
| self.projection = nn.Linear(d_model, d_model) | |
| self.dropout = DropOutLogit(dropout) | |
| self.padded_local_mask = None | |
| self.local_mask = None | |
| self.last_size_2d = None | |
| self.qk_mask = None | |
| def forward(self, q, k, v): | |
| n, c, h, w = q.size() | |
| if self.use_linear: | |
| q = self.linear_Q(q) | |
| k = self.linear_K(k) | |
| v = self.linear_V(v) | |
| hidden_dim = c // self.num_head | |
| relative_emb = self.relative_emb_k(q) | |
| relative_emb = relative_emb.view(n, self.num_head, | |
| self.window_size * self.window_size, | |
| h * w) | |
| padded_local_mask, local_mask = self.compute_mask(h, | |
| w, | |
| device=q.device) | |
| qk_mask = (~padded_local_mask).float() | |
| # Scale | |
| q = q / self.T | |
| q = q.view(-1, self.num_head, hidden_dim, h * w) | |
| k = k.view(-1, self.num_head, hidden_dim, h * w) | |
| v = v.view(-1, self.num_head, hidden_dim, h * w) | |
| qk = q.transpose(-1, -2) @ k # [B, nH, kL, qL] | |
| pad_pixel = self.max_dis * self.dilation | |
| padded_qk = F.pad(qk.view(-1, self.num_head, h * w, h, w), | |
| (pad_pixel, pad_pixel, pad_pixel, pad_pixel), | |
| mode='constant', | |
| value=-1e+8 if qk.dtype == torch.float32 else -1e+4) | |
| qk_mask = qk_mask * 1e+8 if (padded_qk.dtype | |
| == torch.float32) else qk_mask * 1e+4 | |
| padded_qk = padded_qk - qk_mask | |
| padded_qk[padded_local_mask.expand(n, self.num_head, -1, -1, | |
| -1)] += relative_emb.transpose( | |
| -1, -2).reshape(-1) | |
| padded_qk = self.dropout(padded_qk) | |
| local_qk = padded_qk[padded_local_mask.expand(n, self.num_head, -1, -1, | |
| -1)] | |
| global_qk = padded_qk[:, :, :, self.max_dis:-self.max_dis, | |
| self.max_dis:-self.max_dis].reshape( | |
| n, self.num_head, h * w, h * w) | |
| local_attn = torch.softmax(local_qk.reshape( | |
| n, self.num_head, h * w, self.window_size * self.window_size), | |
| dim=3) | |
| global_attn = torch.softmax(global_qk, dim=3) | |
| agg_bias = torch.einsum('bhnw,hcw->nbhc', local_attn, | |
| self.relative_emb_v).reshape(h * w, n, c) | |
| agg_value = (global_attn @ v.transpose(-2, -1)) | |
| output = agg_value + agg_bias | |
| output = self.projection(output) | |
| self.last_size_2d = (h, w) | |
| return output, local_attn | |
| def compute_mask(self, height, width, device=None): | |
| pad_height = height + 2 * self.max_dis | |
| pad_width = width + 2 * self.max_dis | |
| if self.padded_local_mask is not None and (height, | |
| width) == self.last_size_2d: | |
| padded_local_mask = self.padded_local_mask | |
| local_mask = self.local_mask | |
| else: | |
| ky, kx = torch.meshgrid([ | |
| torch.arange(0, pad_height, device=device), | |
| torch.arange(0, pad_width, device=device) | |
| ]) | |
| qy, qx = torch.meshgrid([ | |
| torch.arange(0, height, device=device), | |
| torch.arange(0, width, device=device) | |
| ]) | |
| qy = qy.reshape(-1, 1) | |
| qx = qx.reshape(-1, 1) | |
| offset_y = qy - ky.reshape(1, -1) + self.max_dis | |
| offset_x = qx - kx.reshape(1, -1) + self.max_dis | |
| padded_local_mask = (offset_y.abs() <= self.max_dis) & ( | |
| offset_x.abs() <= self.max_dis) | |
| padded_local_mask = padded_local_mask.view(1, 1, height * width, | |
| pad_height, pad_width) | |
| local_mask = padded_local_mask[:, :, :, self.max_dis:-self.max_dis, | |
| self.max_dis:-self.max_dis] | |
| pad_pixel = self.max_dis * self.dilation | |
| local_mask = F.pad(local_mask.float(), | |
| (pad_pixel, pad_pixel, pad_pixel, pad_pixel), | |
| mode='constant', | |
| value=0).view(1, 1, height * width, pad_height, | |
| pad_width) | |
| self.padded_local_mask = padded_local_mask | |
| self.local_mask = local_mask | |
| return padded_local_mask, local_mask | |
| def linear_gate(x, dim=-1): | |
| # return F.relu_(x).pow(2.) / x.size()[dim] | |
| return torch.softmax(x, dim=dim) | |
| def silu(x): | |
| return x * torch.sigmoid(x) | |
| class GatedPropagation(nn.Module): | |
| def __init__(self, | |
| d_qk, | |
| d_vu, | |
| num_head=8, | |
| dropout=0., | |
| use_linear=True, | |
| d_att=None, | |
| use_dis=False, | |
| qk_chunks=1, | |
| max_mem_len_ratio=-1, | |
| top_k=-1, | |
| expand_ratio=2.): | |
| super().__init__() | |
| expand_ratio = expand_ratio | |
| self.expand_d_vu = int(d_vu * expand_ratio) | |
| self.d_vu = d_vu | |
| self.d_qk = d_qk | |
| self.num_head = num_head | |
| self.use_dis = use_dis | |
| self.qk_chunks = qk_chunks | |
| self.max_mem_len_ratio = float(max_mem_len_ratio) | |
| self.top_k = top_k | |
| self.hidden_dim = self.expand_d_vu // num_head | |
| self.d_att = d_qk // num_head if d_att is None else d_att | |
| self.T = self.d_att**0.5 | |
| self.use_linear = use_linear | |
| self.d_middle = self.d_att * self.num_head | |
| if use_linear: | |
| self.linear_QK = nn.Linear(d_qk, self.d_middle) | |
| half_d_vu = self.hidden_dim * num_head // 2 | |
| self.linear_V1 = nn.Linear(d_vu // 2, half_d_vu) | |
| self.linear_V2 = nn.Linear(d_vu // 2, half_d_vu) | |
| self.linear_U1 = nn.Linear(d_vu // 2, half_d_vu) | |
| self.linear_U2 = nn.Linear(d_vu // 2, half_d_vu) | |
| self.dropout = nn.Dropout(dropout) | |
| self.drop_prob = dropout | |
| self.dw_conv = DWConv2d(self.expand_d_vu) | |
| self.projection = nn.Linear(self.expand_d_vu, d_vu) | |
| self._init_weight() | |
| def forward(self, Q, K, V, U, size_2d): | |
| """ | |
| :param Q: A 3d tensor with shape of [T_q, bs, C_q] | |
| :param K: A 3d tensor with shape of [T_k, bs, C_k] | |
| :param V: A 3d tensor with shape of [T_v, bs, C_v] | |
| """ | |
| num_head = self.num_head | |
| hidden_dim = self.hidden_dim | |
| l, bs, _ = Q.size() | |
| # Linear projections | |
| if self.use_linear: | |
| Q = K = self.linear_QK(Q) | |
| def cat(X1, X2): | |
| if num_head > 1: | |
| X1 = X1.view(-1, bs, num_head, hidden_dim // 2) | |
| X2 = X2.view(-1, bs, num_head, hidden_dim // 2) | |
| X = torch.cat([X1, X2], | |
| dim=-1).view(-1, bs, num_head * hidden_dim) | |
| else: | |
| X = torch.cat([X1, X2], dim=-1) | |
| return X | |
| V1, V2 = torch.split(V, self.d_vu // 2, dim=-1) | |
| V1 = self.linear_V1(V1) | |
| V2 = self.linear_V2(V2) | |
| V = silu(cat(V1, V2)) | |
| U1, U2 = torch.split(U, self.d_vu // 2, dim=-1) | |
| U1 = self.linear_U1(U1) | |
| U2 = self.linear_U2(U2) | |
| U = silu(cat(U1, U2)) | |
| # Scale | |
| Q = Q / self.T | |
| if not self.training and self.max_mem_len_ratio > 0: | |
| mem_len_ratio = float(K.size(0)) / Q.size(0) | |
| if mem_len_ratio > self.max_mem_len_ratio: | |
| scaling_ratio = math.log(mem_len_ratio) / math.log( | |
| self.max_mem_len_ratio) | |
| Q = Q * scaling_ratio | |
| # Multi-head | |
| Q = Q.view(-1, bs, num_head, self.d_att).permute(1, 2, 0, 3) | |
| K = K.view(-1, bs, num_head, self.d_att).permute(1, 2, 3, 0) | |
| V = V.view(-1, bs, num_head, hidden_dim).permute(1, 2, 0, 3) | |
| # Multiplication | |
| QK = multiply_by_ychunks(Q, K, self.qk_chunks) | |
| if self.use_dis: | |
| QK = 2 * QK - K.pow(2).sum(dim=-2, keepdim=True) | |
| # Activation | |
| if not self.training and self.top_k > 0 and self.top_k < QK.size()[-1]: | |
| top_QK, indices = torch.topk(QK, k=self.top_k, dim=-1) | |
| top_attn = linear_gate(top_QK, dim=-1) | |
| attn = torch.zeros_like(QK).scatter_(-1, indices, top_attn) | |
| else: | |
| attn = linear_gate(QK, dim=-1) | |
| # Dropouts | |
| attn = self.dropout(attn) | |
| # Weighted sum | |
| outputs = multiply_by_xchunks(attn, V, | |
| self.qk_chunks).permute(2, 0, 1, 3) | |
| # Restore shape | |
| outputs = outputs.reshape(l, bs, -1) * U | |
| outputs = self.dw_conv(outputs, size_2d) | |
| outputs = self.projection(outputs) | |
| return outputs, attn | |
| def _init_weight(self): | |
| for p in self.parameters(): | |
| if p.dim() > 1: | |
| nn.init.xavier_uniform_(p) | |
| class LocalGatedPropagation(nn.Module): | |
| def __init__(self, | |
| d_qk, | |
| d_vu, | |
| num_head, | |
| dropout=0., | |
| max_dis=7, | |
| dilation=1, | |
| use_linear=True, | |
| enable_corr=True, | |
| d_att=None, | |
| use_dis=False, | |
| expand_ratio=2.): | |
| super().__init__() | |
| expand_ratio = expand_ratio | |
| self.expand_d_vu = int(d_vu * expand_ratio) | |
| self.d_qk = d_qk | |
| self.d_vu = d_vu | |
| self.dilation = dilation | |
| self.window_size = 2 * max_dis + 1 | |
| self.max_dis = max_dis | |
| self.num_head = num_head | |
| self.hidden_dim = self.expand_d_vu // num_head | |
| self.d_att = d_qk // num_head if d_att is None else d_att | |
| self.T = self.d_att**0.5 | |
| self.use_dis = use_dis | |
| self.d_middle = self.d_att * self.num_head | |
| self.use_linear = use_linear | |
| if use_linear: | |
| self.linear_QK = nn.Conv2d(d_qk, self.d_middle, kernel_size=1) | |
| self.linear_V = nn.Conv2d(d_vu, | |
| self.expand_d_vu, | |
| kernel_size=1, | |
| groups=2) | |
| self.linear_U = nn.Conv2d(d_vu, | |
| self.expand_d_vu, | |
| kernel_size=1, | |
| groups=2) | |
| self.relative_emb_k = nn.Conv2d(self.d_middle, | |
| num_head * self.window_size * | |
| self.window_size, | |
| kernel_size=1, | |
| groups=num_head) | |
| self.enable_corr = enable_corr | |
| if enable_corr: | |
| from spatial_correlation_sampler import SpatialCorrelationSampler | |
| self.correlation_sampler = SpatialCorrelationSampler( | |
| kernel_size=1, | |
| patch_size=self.window_size, | |
| stride=1, | |
| padding=0, | |
| dilation=1, | |
| dilation_patch=self.dilation) | |
| self.dw_conv = DWConv2d(self.expand_d_vu) | |
| self.projection = nn.Linear(self.expand_d_vu, d_vu) | |
| self.dropout = nn.Dropout(dropout) | |
| self.drop_prob = dropout | |
| self.local_mask = None | |
| self.last_size_2d = None | |
| self.qk_mask = None | |
| def forward(self, q, k, v, u, size_2d): | |
| n, c, h, w = v.size() | |
| hidden_dim = self.hidden_dim | |
| if self.use_linear: | |
| q = k = self.linear_QK(q) | |
| v = silu(self.linear_V(v)) | |
| u = silu(self.linear_U(u)) | |
| if self.num_head > 1: | |
| v = v.view(-1, 2, self.num_head, hidden_dim // 2, | |
| h * w).permute(0, 2, 1, 3, 4).reshape(n, -1, h, w) | |
| u = u.view(-1, 2, self.num_head, hidden_dim // 2, | |
| h * w).permute(4, 0, 2, 1, 3).reshape(h * w, n, -1) | |
| else: | |
| u = u.permute(2, 3, 0, 1).reshape(h * w, n, -1) | |
| if self.qk_mask is not None and (h, w) == self.last_size_2d: | |
| qk_mask = self.qk_mask | |
| else: | |
| memory_mask = torch.ones((1, 1, h, w), device=v.device).float() | |
| unfolded_k_mask = self.pad_and_unfold(memory_mask).view( | |
| 1, 1, self.window_size * self.window_size, h * w) | |
| qk_mask = 1 - unfolded_k_mask | |
| self.qk_mask = qk_mask | |
| relative_emb = self.relative_emb_k(q) | |
| # Scale | |
| q = q / self.T | |
| q = q.view(-1, self.d_att, h, w) | |
| k = k.view(-1, self.d_att, h, w) | |
| v = v.view(-1, self.num_head, hidden_dim, h * w) | |
| relative_emb = relative_emb.view(n, self.num_head, | |
| self.window_size * self.window_size, | |
| h * w) | |
| if self.enable_corr: | |
| qk = self.correlation_sampler(q, k).view( | |
| n, self.num_head, self.window_size * self.window_size, h * w) | |
| else: | |
| unfolded_k = self.pad_and_unfold(k).view( | |
| n * self.num_head, self.d_att, | |
| self.window_size * self.window_size, h, w) | |
| qk = (q.unsqueeze(2) * unfolded_k).sum(dim=1).view( | |
| n, self.num_head, self.window_size * self.window_size, h * w) | |
| if self.use_dis: | |
| qk = 2 * qk - self.pad_and_unfold( | |
| k.pow(2).sum(dim=1, keepdim=True)).view( | |
| n, self.num_head, self.window_size * self.window_size, | |
| h * w) | |
| qk = qk + relative_emb | |
| qk -= qk_mask * 1e+8 if qk.dtype == torch.float32 else qk_mask * 1e+4 | |
| local_attn = linear_gate(qk, dim=2) | |
| local_attn = self.dropout(local_attn) | |
| global_attn = self.local2global(local_attn, h, w) | |
| agg_value = (global_attn @ v.transpose(-2, -1)).permute( | |
| 2, 0, 1, 3).reshape(h * w, n, -1) | |
| output = agg_value * u | |
| output = self.dw_conv(output, size_2d) | |
| output = self.projection(output) | |
| self.last_size_2d = (h, w) | |
| return output, local_attn | |
| def local2global(self, local_attn, height, width): | |
| batch_size = local_attn.size()[0] | |
| pad_height = height + 2 * self.max_dis | |
| pad_width = width + 2 * self.max_dis | |
| if self.local_mask is not None and (height, | |
| width) == self.last_size_2d: | |
| local_mask = self.local_mask | |
| else: | |
| ky, kx = torch.meshgrid([ | |
| torch.arange(0, pad_height, device=local_attn.device), | |
| torch.arange(0, pad_width, device=local_attn.device) | |
| ]) | |
| qy, qx = torch.meshgrid([ | |
| torch.arange(0, height, device=local_attn.device), | |
| torch.arange(0, width, device=local_attn.device) | |
| ]) | |
| offset_y = qy.reshape(-1, 1) - ky.reshape(1, -1) + self.max_dis | |
| offset_x = qx.reshape(-1, 1) - kx.reshape(1, -1) + self.max_dis | |
| local_mask = (offset_y.abs() <= self.max_dis) & (offset_x.abs() <= | |
| self.max_dis) | |
| local_mask = local_mask.view(1, 1, height * width, pad_height, | |
| pad_width) | |
| self.local_mask = local_mask | |
| global_attn = torch.zeros( | |
| (batch_size, self.num_head, height * width, pad_height, pad_width), | |
| device=local_attn.device) | |
| global_attn[local_mask.expand(batch_size, self.num_head, | |
| -1, -1, -1)] = local_attn.transpose( | |
| -1, -2).reshape(-1) | |
| global_attn = global_attn[:, :, :, self.max_dis:-self.max_dis, | |
| self.max_dis:-self.max_dis].reshape( | |
| batch_size, self.num_head, | |
| height * width, height * width) | |
| return global_attn | |
| def pad_and_unfold(self, x): | |
| pad_pixel = self.max_dis * self.dilation | |
| x = F.pad(x, (pad_pixel, pad_pixel, pad_pixel, pad_pixel), | |
| mode='constant', | |
| value=0) | |
| x = F.unfold(x, | |
| kernel_size=(self.window_size, self.window_size), | |
| stride=(1, 1), | |
| dilation=self.dilation) | |
| return x | |