import json import gradio as gr import os import langchain_openai import langchain_core from langchain_openai import ChatOpenAI from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser def enhance_subject(subject, details): prompt = ChatPromptTemplate.from_messages([ ("system", "Generate a clear and concise subject, then provide additional details using descriptive language. Ensure the response is specific and avoids ambiguity or contradictions. The subject should inspire an engaging photo that tells a story. Remove any unnecessary information and don't add any punctuation at the end of the subject."), ("user", "The main subject is {subject} {details}.") ]) output_parser = StrOutputParser() model = ChatOpenAI(model="gpt-3.5-turbo") chain = ( prompt | model | output_parser ) result = chain.invoke({"subject": subject, "details": details}) return result def load_input_fields(filepath): """ Load the input fields from a JSON file. Args: - filepath (str): The path to the JSON file containing the input fields. Returns: - dict: A dictionary containing the input fields. """ with open(filepath, "r") as file: input_fields = json.load(file) return input_fields def create_html_string(input_text, highlight_color = "green", container_style = "border: 2px solid black; padding: 2px; font-size: 16px;" ): """ Create a HTML string with specific styles applied to highlighted text within square brackets. Args: - input_text (str): The input text with portions to be highlighted within square brackets. - optional: highlight_color (str): Color for the highlighted text (e.g., "green"). - optional: container_style (str): Any css for inline styling (e.g,, "border: 2px solid black;") Returns: - str: A HTML string with the applied styles. """ # Replace the highlighted text with HTML span elements for styling highlighted_text = input_text.replace("[", f'<span style="color:{highlight_color}; font-weight: bold;">[').replace("]", "]</span>") # Construct the full HTML string with the provided styles html_string = f'<p style="{container_style}">{highlighted_text}</p>' return html_string def extract_names(objects): return [obj['name'] for obj in objects if 'name' in obj] def clearInput(): return "" def format_to_markdown(objects): # Skip None objects formatted_list = [ f"> * **{obj.get('name', 'No Name')}** - {obj.get('description', 'No Description')}" for obj in objects if obj is not None and obj["name"] != "None" ] return '\n'.join(formatted_list) find_filter_by_name = lambda collection, key: next((filter for filter in collection if filter['name'] == key), None) def display_info(collection, key): markdown_text = format_to_markdown([find_filter_by_name(collection, key)]) return gr.Markdown(markdown_text, visible=True) def enhance_pipeline(isFrog, subject, details): if isFrog and (subject or details): result = enhance_subject(subject, details) return [gr.Textbox(visible=False), gr.Button(visible=False), gr.TextArea(visible=True, value=result)] elif (subject or details) and not isFrog: return [gr.Textbox(visible=True), gr.Button(visible=True), gr.TextArea(visible=False)] else: return [gr.Textbox(visible=False), gr.Button(visible=False), gr.TextArea(visible=False)] def authenticate(pwd_input, subject, details): if pwd_input == os.environ.get("MAGIC_WORD"): result = enhance_subject(subject, details) return [gr.TextArea(visible=True, value=result), True, gr.Textbox(visible=False), gr.Button(visible=False)] else: raise gr.Error("You are not from our pond! Use your own LLM to add some juice to your prompt.")