Spaces:
Runtime error
Runtime error
| import os | |
| os.system("pip install git+https://github.com/ai-forever/ScrabbleGAN") | |
| import numpy as np | |
| import cv2 | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| from scgan.config import Config | |
| from scgan.generate_images import ImgGenerator | |
| def download_weights(repo_id): | |
| char_map_path = hf_hub_download(repo_id, "char_map.pkl") | |
| weights_path = hf_hub_download(repo_id, "model_checkpoint_epoch_200.pth.tar") | |
| return char_map_path, weights_path | |
| def get_text_from_image(img): | |
| COLOR_MIN = np.array([0, 0, 0],np.uint8) | |
| COLOR_MAX = np.array([250,250,160],np.uint8) | |
| img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) | |
| text_mask = cv2.inRange(img, COLOR_MIN, COLOR_MAX).astype(bool) | |
| img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB) | |
| bg = np.ones(img.shape, dtype=np.uint8) * 255 | |
| bg[text_mask] = img[text_mask] | |
| return bg | |
| def split_text_to_rows(text, n): | |
| # https://stackoverflow.com/a/6187258 | |
| l = text.split() | |
| return [' '.join(l[x:x+n]) for x in range(0, len(l), n)] | |
| def split_text_to_rows_by_chars(text, n): | |
| list_of_rows = [] | |
| for i in range(0, len(a), n): | |
| list_of_rows.append(a[i:n+i].strip()) | |
| return list_of_rows | |
| def remove_right_padding(img, len_text, char_w=32): | |
| # char_w for a standard ScrabbleGAN char width | |
| return img[:, :len_text*char_w] | |
| def split_list2batches(lst, batch_size): | |
| """Split list of images to list of bacthes.""" | |
| return [lst[i:i+batch_size] for i in range(0, len(lst), batch_size)] | |
| def get_canvas_size(images, row_width, left_pad): | |
| canvas_width = 0 | |
| canvas_height = 0 | |
| for image in images: | |
| h, w = image.shape[:2] | |
| canvas_height += h*row_width | |
| if w > canvas_width: | |
| canvas_width = w | |
| canvas_width += left_pad | |
| # expand canvas to the height of the last image | |
| # (to correct the effect of rows shrinking) | |
| h = images[-1].shape[0] | |
| canvas_height += h - h*row_width | |
| return int(canvas_height), canvas_width | |
| def predict(text): | |
| if text.find(NEW_LINE_SYMB) == -1: | |
| texts = split_text_to_rows_by_chars(text, CHARS_IN_ROW) | |
| else: | |
| texts = [row.strip() for row in text.split(NEW_LINE_SYMB)] | |
| texts_batches = split_list2batches(texts, BATCH_SIZE) | |
| images_on_white = [] | |
| for texts_batch in texts_batches: | |
| imgs, texts_on_image = GENERATOR.generate(word_list=texts_batch) | |
| for img, text_on_image in zip(imgs, texts_on_image): | |
| cropped_image = remove_right_padding( | |
| img, len(text_on_image)) | |
| images_on_white.append( | |
| get_text_from_image(cropped_image)) | |
| canvas_height, canvas_width = get_canvas_size( | |
| images_on_white, ROW_WIDTH, LEFT_PAD) | |
| canvas = np.zeros((canvas_height, canvas_width, 3), dtype=np.uint8) | |
| canvas.fill(255) | |
| start_draw = 0 | |
| for image_on_white in images_on_white: | |
| h, w = image_on_white.shape[:2] | |
| canvas[start_draw:start_draw+h, LEFT_PAD:LEFT_PAD+w] = image_on_white | |
| start_draw += int(h * ROW_WIDTH) | |
| return canvas | |
| CHAR_MAP_PATH, WEIGHTS_PATH = download_weights("sberbank-ai/scrabblegan-peter") | |
| GENERATOR = ImgGenerator( | |
| checkpt_path=WEIGHTS_PATH, | |
| config=Config, | |
| char_map_path=CHAR_MAP_PATH | |
| ) | |
| BATCH_SIZE = 3 | |
| ROW_WIDTH = 0.7 | |
| LEFT_PAD = 10 | |
| WORDS_IN_ROW = 4 | |
| CHARS_IN_ROW = 40 | |
| NEW_LINE_SYMB = '{n}' | |
| gr.Interface( | |
| predict, | |
| inputs=gr.Textbox(label=f"Type your text (RU) to generate it on an image. The text will be automatically splitted on lines, or you can use a new line symbol {NEW_LINE_SYMB}"), | |
| outputs=gr.Image(label="Generated image"), | |
| title="Peter the Great handwritten image generation", | |
| ).launch() |