File size: 14,975 Bytes
c180e59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""Trainers for semantic segmentation."""
import os
import warnings
from abc import ABC, abstractmethod
from collections import OrderedDict
from collections.abc import Sequence
from typing import Any, Optional, Union
import lightning
import segmentation_models_pytorch as smp
import torch
import torch.nn as nn
from lightning.pytorch import LightningModule
from lightning.pytorch.callbacks import Callback
from torch import Tensor
from torch.optim import AdamW
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torchmetrics import MetricCollection
from torchmetrics.classification import MulticlassAccuracy, MulticlassJaccardIndex
from torchvision.models._api import WeightsEnum
def get_weight(name: str) -> WeightsEnum:
"""Get the weights enum value by its full name.
.. versionadded:: 0.4
Args:
name: Name of the weight enum entry.
Returns:
The requested weight enum.
"""
return eval(name)
def extract_backbone(path: str) -> tuple[str, "OrderedDict[str, Tensor]"]:
"""Extracts a backbone from a lightning checkpoint file.
Args:
path: path to checkpoint file (.ckpt)
Returns:
tuple containing model name and state dict
Raises:
ValueError: if 'model' or 'backbone' not in
checkpoint['hyper_parameters']
.. versionchanged:: 0.4
Renamed from *extract_encoder* to *extract_backbone*
"""
checkpoint = torch.load(path, map_location=torch.device("cpu"))
if "model" in checkpoint["hyper_parameters"]:
name = checkpoint["hyper_parameters"]["model"]
state_dict = checkpoint["state_dict"]
state_dict = OrderedDict({k: v for k, v in state_dict.items() if "model." in k})
state_dict = OrderedDict(
{k.replace("model.", ""): v for k, v in state_dict.items()}
)
elif "backbone" in checkpoint["hyper_parameters"]:
name = checkpoint["hyper_parameters"]["backbone"]
state_dict = checkpoint["state_dict"]
state_dict = OrderedDict(
{k: v for k, v in state_dict.items() if "model.backbone.model" in k}
)
state_dict = OrderedDict(
{k.replace("model.backbone.model.", ""): v for k, v in state_dict.items()}
)
else:
raise ValueError(
"Unknown checkpoint task. Only backbone or model extraction is supported"
)
return name, state_dict
class BaseTask(LightningModule, ABC):
"""Abstract base class for all TorchGeo trainers.
.. versionadded:: 0.5
"""
#: Model to train.
model: Any
#: Performance metric to monitor in learning rate scheduler and callbacks.
monitor = "val_loss"
#: Whether the goal is to minimize or maximize the performance metric to monitor.
mode = "min"
def __init__(self, ignore: Optional[Union[Sequence[str], str]] = None) -> None:
"""Initialize a new BaseTask instance.
Args:
ignore: Arguments to skip when saving hyperparameters.
"""
super().__init__()
self.save_hyperparameters(ignore=ignore)
self.configure_losses()
self.configure_metrics()
self.configure_models()
def configure_losses(self) -> None:
"""Initialize the loss criterion."""
def configure_metrics(self) -> None:
"""Initialize the performance metrics."""
@abstractmethod
def configure_models(self) -> None:
"""Initialize the model."""
def configure_optimizers(
self,
) -> "lightning.pytorch.utilities.types.OptimizerLRSchedulerConfig":
"""Initialize the optimizer and learning rate scheduler.
Returns:
Optimizer and learning rate scheduler.
"""
optimizer = AdamW(self.parameters(), lr=self.hparams["lr"])
scheduler = ReduceLROnPlateau(optimizer, patience=self.hparams["patience"])
return {
"optimizer": optimizer,
"lr_scheduler": {"scheduler": scheduler, "monitor": self.monitor},
}
def forward(self, *args: Any, **kwargs: Any) -> Any:
"""Forward pass of the model.
Args:
args: Arguments to pass to model.
kwargs: Keyword arguments to pass to model.
Returns:
Output of the model.
"""
return self.model(*args, **kwargs)
class SemanticSegmentationTask(BaseTask):
"""Semantic Segmentation."""
def __init__(
self,
model: str = "unet",
backbone: str = "resnet50",
weights: Optional[Union[WeightsEnum, str, bool]] = None,
in_channels: int = 3,
num_classes: int = 1000,
num_filters: int = 3,
loss: str = "ce",
class_weights: Optional[Tensor] = None,
ignore_index: Optional[int] = None,
lr: float = 1e-3,
patience: int = 10,
freeze_backbone: bool = False,
freeze_decoder: bool = False,
) -> None:
"""Initialize a new SemanticSegmentationTask instance.
Args:
model: Name of the
`smp <https://smp.readthedocs.io/en/latest/models.html>`__ model to use.
backbone: Name of the `timm
<https://smp.readthedocs.io/en/latest/encoders_timm.html>`__ or `smp
<https://smp.readthedocs.io/en/latest/encoders.html>`__ backbone to use.
weights: Initial model weights. Either a weight enum, the string
representation of a weight enum, True for ImageNet weights, False or
None for random weights, or the path to a saved model state dict. FCN
model does not support pretrained weights. Pretrained ViT weight enums
are not supported yet.
in_channels: Number of input channels to model.
num_classes: Number of prediction classes.
num_filters: Number of filters. Only applicable when model='fcn'.
loss: Name of the loss function, currently supports
'ce', 'jaccard' or 'focal' loss.
class_weights: Optional rescaling weight given to each
class and used with 'ce' loss.
ignore_index: Optional integer class index to ignore in the loss and
metrics.
lr: Learning rate for optimizer.
patience: Patience for learning rate scheduler.
freeze_backbone: Freeze the backbone network to fine-tune the
decoder and segmentation head.
freeze_decoder: Freeze the decoder network to linear probe
the segmentation head.
Warns:
UserWarning: When loss='jaccard' and ignore_index is specified.
.. versionchanged:: 0.3
*ignore_zeros* was renamed to *ignore_index*.
.. versionchanged:: 0.4
*segmentation_model*, *encoder_name*, and *encoder_weights*
were renamed to *model*, *backbone*, and *weights*.
.. versionadded: 0.5
The *class_weights*, *freeze_backbone*, and *freeze_decoder* parameters.
.. versionchanged:: 0.5
The *weights* parameter now supports WeightEnums and checkpoint paths.
*learning_rate* and *learning_rate_schedule_patience* were renamed to
*lr* and *patience*.
"""
if ignore_index is not None and loss == "jaccard":
warnings.warn(
"ignore_index has no effect on training when loss='jaccard'",
UserWarning,
)
self.weights = weights
super().__init__(ignore="weights")
def configure_losses(self) -> None:
"""Initialize the loss criterion.
Raises:
ValueError: If *loss* is invalid.
"""
loss: str = self.hparams["loss"]
ignore_index = self.hparams["ignore_index"]
if loss == "ce":
ignore_value = -1000 if ignore_index is None else ignore_index
self.criterion = nn.CrossEntropyLoss(
ignore_index=ignore_value, weight=self.hparams["class_weights"]
)
elif loss == "jaccard":
self.criterion = smp.losses.JaccardLoss(
mode="multiclass", classes=self.hparams["num_classes"]
)
elif loss == "focal":
self.criterion = smp.losses.FocalLoss(
"multiclass", ignore_index=ignore_index, normalized=True
)
else:
raise ValueError(
f"Loss type '{loss}' is not valid. "
"Currently, supports 'ce', 'jaccard' or 'focal' loss."
)
def configure_metrics(self) -> None:
"""Initialize the performance metrics.
* :class:`~torchmetrics.classification.MulticlassAccuracy`: Overall accuracy
(OA) using 'micro' averaging. The number of true positives divided by the
dataset size. Higher values are better.
* :class:`~torchmetrics.classification.MulticlassJaccardIndex`: Intersection
over union (IoU). Uses 'micro' averaging. Higher valuers are better.
.. note::
* 'Micro' averaging suits overall performance evaluation but may not reflect
minority class accuracy.
* 'Macro' averaging, not used here, gives equal weight to each class, useful
for balanced performance assessment across imbalanced classes.
"""
num_classes: int = self.hparams["num_classes"]
ignore_index: Optional[int] = self.hparams["ignore_index"]
metrics = MetricCollection(
[
MulticlassAccuracy(
num_classes=num_classes,
ignore_index=ignore_index,
multidim_average="global",
average="micro",
),
MulticlassJaccardIndex(
num_classes=num_classes, ignore_index=ignore_index, average="micro"
),
]
)
self.train_metrics = metrics.clone(prefix="train_")
self.val_metrics = metrics.clone(prefix="val_")
self.test_metrics = metrics.clone(prefix="test_")
def configure_models(self) -> None:
"""Initialize the model.
Raises:
ValueError: If *model* is invalid.
"""
model: str = self.hparams["model"]
backbone: str = self.hparams["backbone"]
weights = self.weights
in_channels: int = self.hparams["in_channels"]
num_classes: int = self.hparams["num_classes"]
num_filters: int = self.hparams["num_filters"]
if model == "unet":
self.model = smp.Unet(
encoder_name=backbone,
encoder_weights="imagenet" if weights is True else None,
in_channels=in_channels,
classes=num_classes,
)
elif model == "deeplabv3+":
self.model = smp.DeepLabV3Plus(
encoder_name=backbone,
encoder_weights="imagenet" if weights is True else None,
in_channels=in_channels,
classes=num_classes,
)
else:
raise ValueError(
f"Model type '{model}' is not valid. "
"Currently, only supports 'unet', 'deeplabv3+' and 'fcn'."
)
if weights and weights is not True:
if isinstance(weights, WeightsEnum):
state_dict = weights.get_state_dict(progress=True)
elif os.path.exists(weights):
_, state_dict = extract_backbone(weights)
else:
state_dict = get_weight(weights).get_state_dict(progress=True)
self.model.encoder.load_state_dict(state_dict)
# Freeze backbone
if self.hparams["freeze_backbone"] and model in ["unet", "deeplabv3+"]:
for param in self.model.encoder.parameters():
param.requires_grad = False
# Freeze decoder
if self.hparams["freeze_decoder"] and model in ["unet", "deeplabv3+"]:
for param in self.model.decoder.parameters():
param.requires_grad = False
def training_step(
self, batch: Any, batch_idx: int, dataloader_idx: int = 0
) -> Tensor:
"""Compute the training loss and additional metrics.
Args:
batch: The output of your DataLoader.
batch_idx: Integer displaying index of this batch.
dataloader_idx: Index of the current dataloader.
Returns:
The loss tensor.
"""
x = batch["image"]
y = batch["mask"]
y_hat = self(x)
loss: Tensor = self.criterion(y_hat, y)
self.log("train_loss", loss)
self.train_metrics(y_hat, y)
self.log_dict(self.train_metrics)
return loss
def validation_step(
self, batch: Any, batch_idx: int, dataloader_idx: int = 0
) -> None:
"""Compute the validation loss and additional metrics.
Args:
batch: The output of your DataLoader.
batch_idx: Integer displaying index of this batch.
dataloader_idx: Index of the current dataloader.
"""
x = batch["image"]
y = batch["mask"]
y_hat = self(x)
loss = self.criterion(y_hat, y)
self.log("val_loss", loss)
self.val_metrics(y_hat, y)
self.log_dict(self.val_metrics)
def test_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> None:
"""Compute the test loss and additional metrics.
Args:
batch: The output of your DataLoader.
batch_idx: Integer displaying index of this batch.
dataloader_idx: Index of the current dataloader.
"""
x = batch["image"]
y = batch["mask"]
y_hat = self(x)
loss = self.criterion(y_hat, y)
self.log("test_loss", loss)
self.test_metrics(y_hat, y)
self.log_dict(self.test_metrics)
def predict_step(
self, batch: Any, batch_idx: int, dataloader_idx: int = 0
) -> Tensor:
"""Compute the predicted class probabilities.
Args:
batch: The output of your DataLoader.
batch_idx: Integer displaying index of this batch.
dataloader_idx: Index of the current dataloader.
Returns:
Output predicted probabilities.
"""
x = batch["image"]
y_hat: Tensor = self(x).softmax(dim=1)
return y_hat
class CustomSemanticSegmentationTask(SemanticSegmentationTask):
"""A custom trainer for semantic segmentation tasks."""
def configure_callbacks(self) -> list[Callback]:
"""Configures the callbacks for the trainer.
Returns:
an empty list to override the default callbacks, we set these in the Trainer
"""
return []
|