Spaces:
Sleeping
Sleeping
File size: 5,761 Bytes
219309c 4c8f4a0 e8afe79 219309c 4c8f4a0 a6bff0e 4c8f4a0 e8afe79 219309c 4c8f4a0 c25ad97 4c8f4a0 e8afe79 219309c 9883a96 e04f2af 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 219309c 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 e5528c2 e8afe79 4c8f4a0 219309c e8afe79 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 e8afe79 4c8f4a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
from pathlib import Path
from urllib.request import urlretrieve
import cartopy.crs as ccrs
import fugue.api as fa
import geopandas as gpd
import geoviews as gv
import panel as pn
import pandas as pd
import pyarrow as pa
from datasets import load_dataset_builder
from holoviews.streams import RangeXY
from shapely import wkt
gv.extension("bokeh")
pn.extension("tabulator")
INTRO = """
*Have you ever looked at a street name and wondered how common it is?*
Put your curiosity to rest with MapnStreets! By simply entering a name
in the provided box, you can discover the prevalence of a street name.
The map will display the locations of all streets with that name,
and for more detailed information, you can click on the table to
highlight their exact whereabouts.
Uses [TIGER/Line® Edges](https://www2.census.gov/geo/tiger/TIGER_RD18/LAYER/EDGES/)
data provided by the US Census Bureau.
Powered by OSS:
[Fugue](https://fugue-tutorials.readthedocs.io),
[Panel](https://panel.holoviz.org/),
[GeoPandas](https://geopandas.org/),
[GeoViews](https://geoviews.org/),
[Parquet](https://parquet.apache.org/),
[DuckDB](https://duckdb.org/),
[Ray](https://ray.io/),
and all their supporting dependencies.
"""
DATA_DIR = Path.home() / ".cache" / "huggingface" / "datasets"
DATA_PATH = DATA_DIR / "edges.parquet"
QUERY_FMT = """
df = LOAD "{{data_path}}"
df_sel = SELECT STATEFP, COUNTYFP, FULLNAME, geometry \
FROM df WHERE FULLNAME == '{{name}}'
"""
def download_hf(path: str, **kwargs):
builder = load_dataset_builder("ahuang11/tiger_layer_edges")
builder.download_and_prepare(DATA_PATH, file_format="parquet")
class MapnStreets:
def __init__(self):
self.gdf = None
self.name_input = pn.widgets.TextInput(
value="*Andrew St",
placeholder="Enter a name...",
margin=(9, 5, 5, 25),
)
pn.bind(self.process_name, self.name_input, watch=True)
features = gv.tile_sources.CartoDark()
self.holoviews_pane = pn.pane.HoloViews(
features, sizing_mode="stretch_both", min_height=800
)
self.tabulator = pn.widgets.Tabulator(width=225, disabled=True)
self.records_text = pn.widgets.StaticText(value="<h3>0 records found</h3>")
pn.state.onload(self.onload)
def onload(self):
download_hf("ahuang11/tiger_layer_edges")
self.name_input.param.trigger("value")
range_xy = RangeXY()
line_strings = gv.DynamicMap(
self.refresh_line_strings, streams=[range_xy]
).opts(responsive=True)
range_xy.source = line_strings
points = gv.DynamicMap(
pn.bind(self.refresh_points, self.tabulator.param.selection)
).opts(responsive=True)
self.holoviews_pane.object *= line_strings * points
def serialize_geom(self, df):
df["geometry"] = df["geometry"].apply(wkt.loads)
gdf = gpd.GeoDataFrame(df)
centroids = gdf["geometry"].centroid
gdf["Longitude"] = centroids.x
gdf["Latitude"] = centroids.y
return gdf
def process_name(self, name):
try:
name = name.strip()
self.holoviews_pane.loading = True
query_fmt = QUERY_FMT
if "*" in name or "%" in name:
name = name.replace("*", "%")
query_fmt = query_fmt.replace("==", "LIKE")
if name == "%":
return
df = fa.as_pandas(
fa.fugue_sql(
query_fmt,
data_path=str(DATA_PATH.absolute()),
name=name,
engine="duckdb",
as_local=True,
)
)
self.gdf = self.serialize_geom(df)
county_gdf = self.gdf.drop_duplicates(
subset=["STATEFP", "COUNTYFP", "FULLNAME"]
)
self.records_text.value = f"<h3>{len(county_gdf)} records found</h3>"
self.tabulator.value = (
county_gdf["FULLNAME"]
.value_counts()
.rename_axis("Name")
.rename("Count")
.to_frame()
)
self.refresh_line_strings()
finally:
self.holoviews_pane.loading = False
def refresh_line_strings(self, x_range=None, y_range=None):
line_strings = gv.Polygons(
self.gdf[["geometry"]],
crs=ccrs.PlateCarree(),
).opts(fill_alpha=0, line_color="white", line_width=8, alpha=0.6)
return line_strings.select(x=x_range, y=y_range)
def refresh_points(self, selection):
gdf_selection = self.gdf[
["Longitude", "Latitude", "STATEFP", "COUNTYFP", "FULLNAME"]
]
if self.tabulator.selection:
names = self.tabulator.value.iloc[selection].index.tolist()
gdf_selection = gdf_selection.loc[gdf_selection["FULLNAME"].isin(names)]
points = gv.Points(
gdf_selection,
kdims=["Longitude", "Latitude"],
vdims=["STATEFP", "COUNTYFP", "FULLNAME"],
crs=ccrs.PlateCarree(),
).opts(marker="x", tools=["hover"], color="#FF4136", size=8)
return points
def view(self):
template = pn.template.FastListTemplate(
header=[pn.Row(self.name_input, self.records_text)],
sidebar=[INTRO, self.tabulator],
main=[
self.holoviews_pane,
],
theme="dark",
title="MapnStreets",
sidebar_width=225,
)
return template.servable()
mapn_streets = MapnStreets()
mapn_streets.view() |