Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import io
|
| 3 |
+
import re
|
| 4 |
+
import json
|
| 5 |
+
import PyPDF2
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from typing import Optional, Dict, List
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
import tiktoken
|
| 12 |
+
from langchain_groq import ChatGroq
|
| 13 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 14 |
+
from langchain.memory import ConversationSummaryBufferMemory
|
| 15 |
+
from langchain.chains import RetrievalQA
|
| 16 |
+
from langchain.schema import Document
|
| 17 |
+
from langchain_astradb import AstraDBVectorStore
|
| 18 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 19 |
+
|
| 20 |
+
# Load environment variables
|
| 21 |
+
load_dotenv()
|
| 22 |
+
|
| 23 |
+
# System constants
|
| 24 |
+
DEBUG_MODE = False
|
| 25 |
+
MAX_RETRIES = 3
|
| 26 |
+
MODEL_TOKEN_LIMIT = 6000
|
| 27 |
+
DOC_TOKENS = 2500
|
| 28 |
+
REG_TOKENS = 1500
|
| 29 |
+
MEMORY_TOKENS = 1000
|
| 30 |
+
|
| 31 |
+
def log_debug(message: str) -> None:
|
| 32 |
+
if DEBUG_MODE:
|
| 33 |
+
print(f"[DEBUG {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] {message}")
|
| 34 |
+
|
| 35 |
+
# Load API keys
|
| 36 |
+
try:
|
| 37 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
| 38 |
+
ASTRA_DB_API_ENDPOINT = os.getenv("ASTRA_DB_API_ENDPOINT")
|
| 39 |
+
ASTRA_DB_APPLICATION_TOKEN = os.getenv("ASTRA_DB_APPLICATION_TOKEN")
|
| 40 |
+
if not all([GROQ_API_KEY, ASTRA_DB_API_ENDPOINT, ASTRA_DB_APPLICATION_TOKEN]):
|
| 41 |
+
raise ValueError("Missing API keys")
|
| 42 |
+
log_debug("API keys loaded")
|
| 43 |
+
except Exception as e:
|
| 44 |
+
raise ValueError(f"Failed to load API keys: {str(e)}")
|
| 45 |
+
|
| 46 |
+
# Initialize embedding model
|
| 47 |
+
try:
|
| 48 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 49 |
+
log_debug("Embedding model initialized")
|
| 50 |
+
except Exception as e:
|
| 51 |
+
raise ValueError(f"Failed to initialize embedding model: {str(e)}")
|
| 52 |
+
|
| 53 |
+
# Initialize vector store
|
| 54 |
+
try:
|
| 55 |
+
astra_vectorstore = AstraDBVectorStore(
|
| 56 |
+
embedding=embedding_model,
|
| 57 |
+
collection_name="trustguardian_kb",
|
| 58 |
+
api_endpoint=ASTRA_DB_API_ENDPOINT,
|
| 59 |
+
token=ASTRA_DB_APPLICATION_TOKEN
|
| 60 |
+
)
|
| 61 |
+
retriever = astra_vectorstore.as_retriever(
|
| 62 |
+
search_type="mmr",
|
| 63 |
+
search_kwargs={"k": 6, "fetch_k": 12, "lambda_mult": 0.6}
|
| 64 |
+
)
|
| 65 |
+
log_debug("Vector store initialized")
|
| 66 |
+
except Exception as e:
|
| 67 |
+
raise ValueError(f"Failed to initialize vector store: {str(e)}")
|
| 68 |
+
|
| 69 |
+
# Initialize LLM
|
| 70 |
+
try:
|
| 71 |
+
llm = ChatGroq(groq_api_key=GROQ_API_KEY, model_name="mistral-saba-24b")
|
| 72 |
+
log_debug("LLM initialized")
|
| 73 |
+
except Exception as e:
|
| 74 |
+
raise ValueError(f"Failed to initialize LLM: {str(e)}")
|
| 75 |
+
|
| 76 |
+
# Initialize memory
|
| 77 |
+
try:
|
| 78 |
+
memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=8000, return_messages=True)
|
| 79 |
+
doc_memory = {"latest_doc": ""}
|
| 80 |
+
log_debug("Memory initialized")
|
| 81 |
+
except Exception as e:
|
| 82 |
+
raise ValueError(f"Failed to initialize memory: {str(e)}")
|
| 83 |
+
|
| 84 |
+
# Document processing
|
| 85 |
+
class DocumentProcessor:
|
| 86 |
+
@staticmethod
|
| 87 |
+
def clean_text(text: str) -> str:
|
| 88 |
+
text = re.sub(r'%PDF-\d+\.\d+|obj|endobj|stream|endstream|xref|trailer|startxref', '', text)
|
| 89 |
+
text = re.sub(r'[^\x20-\x7E\n]', '', text)
|
| 90 |
+
text = re.sub(r'\s+', ' ', text)
|
| 91 |
+
text = re.sub(r'\\n', '\n', text)
|
| 92 |
+
return text.strip()
|
| 93 |
+
|
| 94 |
+
@staticmethod
|
| 95 |
+
def test_text_quality(text: str) -> tuple:
|
| 96 |
+
if not text.strip():
|
| 97 |
+
return False, "Empty text"
|
| 98 |
+
words = text.split()
|
| 99 |
+
unique_words = set(words)
|
| 100 |
+
if len(words) < 10:
|
| 101 |
+
return False, f"Too few words: {len(words)}"
|
| 102 |
+
if len(unique_words) < 5:
|
| 103 |
+
return False, f"Too little variety: {len(unique_words)} unique words"
|
| 104 |
+
return True, f"Text quality good: {len(words)} words"
|
| 105 |
+
|
| 106 |
+
@staticmethod
|
| 107 |
+
def extract_text_from_pdf(file_data: bytes) -> str:
|
| 108 |
+
try:
|
| 109 |
+
reader = PyPDF2.PdfReader(io.BytesIO(file_data))
|
| 110 |
+
text_parts = [page.extract_text() for page in reader.pages if page.extract_text().strip()]
|
| 111 |
+
return "\n".join(text_parts)
|
| 112 |
+
except Exception as e:
|
| 113 |
+
raise ValueError(f"PDF extraction failed: {str(e)}")
|
| 114 |
+
|
| 115 |
+
def extract_text_from_uploaded_file(uploaded_file) -> str:
|
| 116 |
+
try:
|
| 117 |
+
file_data = uploaded_file.read() if hasattr(uploaded_file, 'read') else uploaded_file
|
| 118 |
+
text = DocumentProcessor.extract_text_from_pdf(file_data)
|
| 119 |
+
cleaned_text = DocumentProcessor.clean_text(text)
|
| 120 |
+
quality, msg = DocumentProcessor.test_text_quality(cleaned_text)
|
| 121 |
+
if not quality:
|
| 122 |
+
raise ValueError(f"Poor text quality: {msg}")
|
| 123 |
+
return cleaned_text
|
| 124 |
+
except Exception as e:
|
| 125 |
+
raise ValueError(f"Document processing failed: {str(e)}\nEnsure valid PDF with text content.")
|
| 126 |
+
|
| 127 |
+
# Token management
|
| 128 |
+
class TokenManager:
|
| 129 |
+
def __init__(self):
|
| 130 |
+
self.encoding = tiktoken.get_encoding("cl100k_base")
|
| 131 |
+
|
| 132 |
+
def count_tokens(self, text: str) -> int:
|
| 133 |
+
return len(self.encoding.encode(text))
|
| 134 |
+
|
| 135 |
+
def truncate_to_limit(self, text: str, max_tokens: int) -> str:
|
| 136 |
+
tokens = self.encoding.encode(text)
|
| 137 |
+
if len(tokens) > max_tokens:
|
| 138 |
+
tokens = tokens[:max_tokens]
|
| 139 |
+
return self.encoding.decode(tokens)
|
| 140 |
+
|
| 141 |
+
token_manager = TokenManager()
|
| 142 |
+
|
| 143 |
+
# Text analysis helpers
|
| 144 |
+
def analyze_document_structure(text: str) -> Dict:
|
| 145 |
+
words = text.split()
|
| 146 |
+
lines = text.split('\n')
|
| 147 |
+
return {
|
| 148 |
+
'total_chars': len(text),
|
| 149 |
+
'total_words': len(words),
|
| 150 |
+
'total_lines': len(lines),
|
| 151 |
+
'unique_words': len(set(words))
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
def extract_key_sections(text: str) -> List[str]:
|
| 155 |
+
section_patterns = [
|
| 156 |
+
r'^[A-Z][^a-z\n]{2,}[:\-]',
|
| 157 |
+
r'^\d+\.\s+[A-Z][^a-z]{2,}',
|
| 158 |
+
r'^[IVX]+\.\s+[A-Z]'
|
| 159 |
+
]
|
| 160 |
+
return [line.strip() for line in text.split('\n') if any(re.match(p, line.strip()) for p in section_patterns)]
|
| 161 |
+
|
| 162 |
+
# Main processing logic
|
| 163 |
+
class TrustGuardian:
|
| 164 |
+
def __init__(self):
|
| 165 |
+
self.token_manager = TokenManager()
|
| 166 |
+
self.conversation_history = []
|
| 167 |
+
|
| 168 |
+
def generate_response_prompt(self, doc_text: str, user_query: str, reg_context: str = "") -> str:
|
| 169 |
+
return f"""
|
| 170 |
+
You are TrustGuardian, an expert compliance analyst. Provide precise, clear responses with exact references (e.g., "GDPR Article 32(1)(b)") where applicable.
|
| 171 |
+
|
| 172 |
+
TASK: {user_query}
|
| 173 |
+
{'DOCUMENT CONTENT: ' + doc_text[:2500] if doc_text else 'NO DOCUMENT'}
|
| 174 |
+
{'REGULATORY CONTEXT: ' + reg_context if reg_context else ''}
|
| 175 |
+
|
| 176 |
+
INSTRUCTIONS:
|
| 177 |
+
- For documents: Analyze relevant sections, cite document parts (e.g., "Section 3.2") and standards (e.g., "SOC 2 TSC CC6.1").
|
| 178 |
+
- For regulations: Cite specific sections (e.g., "HIPAA Β§164.308"), explain clearly, provide examples.
|
| 179 |
+
- For general queries: Explain compliance aspects, suggest best practices, note sources.
|
| 180 |
+
- If no reference exists, state "No specific reference available" and use general knowledge.
|
| 181 |
+
- Format with headings, bullets, and citations.
|
| 182 |
+
- Suggest next steps if relevant.
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
def process_regulatory_context(self, query: str) -> tuple:
|
| 186 |
+
try:
|
| 187 |
+
rag_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, return_source_documents=True)
|
| 188 |
+
result = rag_chain.invoke({"query": query})
|
| 189 |
+
context = result["result"]
|
| 190 |
+
sources = result.get("source_documents", [])
|
| 191 |
+
citations = [f"{doc.metadata.get('source', 'Unknown')}: \"{doc.page_content[:150].replace('\n', ' ').strip()}...\"" for doc in sources]
|
| 192 |
+
return context, citations
|
| 193 |
+
except Exception as e:
|
| 194 |
+
log_debug(f"Regulatory context error: {str(e)}")
|
| 195 |
+
return "", []
|
| 196 |
+
|
| 197 |
+
def handle_user_input(self, upload, user_query: str) -> str:
|
| 198 |
+
try:
|
| 199 |
+
normalized_query = user_query.lower().strip()
|
| 200 |
+
if normalized_query in ["hi", "hello", "hey", "salaam", "salam", "hola"]:
|
| 201 |
+
return "π Hello! I'm TrustGuardian. Upload a PDF or ask about compliance (e.g., 'HIPAA requirements')."
|
| 202 |
+
|
| 203 |
+
doc_text = ""
|
| 204 |
+
if upload:
|
| 205 |
+
doc_text = extract_text_from_uploaded_file(upload)
|
| 206 |
+
analyze_document_structure(doc_text)
|
| 207 |
+
extract_key_sections(doc_text)
|
| 208 |
+
|
| 209 |
+
reg_context, citations = ("", []) if not any(term in normalized_query for term in ['compliance', 'regulation', 'requirement', 'law', 'standard']) else self.process_regulatory_context(user_query)
|
| 210 |
+
prompt = self.generate_response_prompt(doc_text, user_query, reg_context)
|
| 211 |
+
response = llm.invoke(prompt).content.strip()
|
| 212 |
+
final_response = response + ("\n\nSources:\n" + "\n".join(citations) if citations else "")
|
| 213 |
+
self.conversation_history.append({"user": user_query, "assistant": final_response, "timestamp": datetime.now().isoformat()})
|
| 214 |
+
return final_response
|
| 215 |
+
except Exception as e:
|
| 216 |
+
return f"β οΈ Error: {str(e)}\nTry rephrasing or check file format."
|
| 217 |
+
|
| 218 |
+
# Initialize and run
|
| 219 |
+
guardian = TrustGuardian()
|
| 220 |
+
ui = gr.Interface(
|
| 221 |
+
fn=guardian.handle_user_input,
|
| 222 |
+
inputs=[
|
| 223 |
+
gr.File(label="π Upload PDF", type="binary", file_types=[".pdf"]),
|
| 224 |
+
gr.Textbox(label="π Ask a Question", placeholder="E.g., 'Summarize document' or 'GDPR requirements'", lines=2)
|
| 225 |
+
],
|
| 226 |
+
outputs=gr.Markdown(label="π Analysis"),
|
| 227 |
+
title="π‘οΈ TrustGuardian β Compliance Assistant",
|
| 228 |
+
description="Upload a PDF or ask about compliance regulations. Get precise answers with exact references.",
|
| 229 |
+
examples=[[None, "What are HIPAA requirements?"], [None, "Explain GDPR basics"]],
|
| 230 |
+
theme=gr.themes.Soft()
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
if __name__ == "__main__":
|
| 234 |
+
ui.launch(server_name="0.0.0.0", server_port=7860)
|