from transformers import AutoModelForSeq2SeqLM, AutoTokenizer tokenizerModelName = 'google/flan-t5-base' instruct_model_name='truocpham/flan-dialogue-summary-checkpoint' tokenizer = AutoTokenizer.from_pretrained(tokenizerModelName) model = AutoModelForSeq2SeqLM.from_pretrained(instruct_model_name) def SummarizeThis(Dialogue): prompt = f""" Summarize the following conversation in more than 10 lines please. {Dialogue} Summary: """ inputs = tokenizer(prompt, return_tensors='pt') Summary = tokenizer.decode( model.generate( inputs["input_ids"], max_new_tokens=800, )[0], skip_special_tokens=True ) return Summary # Making the gradio application import gradio as gr iface = gr.Interface(fn=SummarizeThis, inputs="text", outputs=["text"], title="Summarization") iface.launch()