Spaces:
Runtime error
Runtime error
File size: 7,399 Bytes
103d063 4fa2a7f f83098d 103d063 4fa2a7f 103d063 4fa2a7f 103d063 4fa2a7f 103d063 4fa2a7f 103d063 4fa2a7f 103d063 4fa2a7f 103d063 4fa2a7f 103d063 4fa2a7f 103d063 4fa2a7f 103d063 4fa2a7f 2976ba1 4fa2a7f 103d063 4fa2a7f 103d063 4fa2a7f 103d063 4fa2a7f 103d063 4fa2a7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import gradio as gr
import requests
import pytesseract
from PIL import Image
import docx
from transformers import pipeline
from keybert import KeyBERT
from io import BytesIO
from langdetect import detect
import re
import asyncio
from twscrape import API, gather
from selenium.webdriver.chrome.options import Options
from selenium import webdriver
from webdriver_manager.chrome import ChromeDriverManager
from bs4 import BeautifulSoup
import time
# Set up Tesseract
# pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe' # Uncomment for Windows
# Initialize AI models
emotion_classifier = pipeline("text-classification", model="joeddav/distilbert-base-uncased-go-emotions-student")
keyword_extractor = KeyBERT()
zero_shot_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
class RealTimeSocialScraper:
def __init__(self):
self.api = API() # Configure proxies if needed
self.driver = self._init_browser()
def _init_browser(self):
chrome_options = Options()
chrome_options.add_argument("--headless")
chrome_options.add_argument("--disable-gpu")
return webdriver.Chrome(ChromeDriverManager().install(), options=chrome_options)
async def scrape(self, platform, query, limit=10):
if platform == "twitter":
return await self._scrape_twitter(query, limit)
elif platform == "instagram":
return self._scrape_instagram(query)
elif platform == "tiktok":
return self._scrape_tiktok(query)
else:
raise ValueError(f"Unsupported platform: {platform}")
async def _scrape_twitter(self, query, limit):
await self.api.pool.login_all()
return await gather(self.api.search(query, limit=limit))
def _scrape_instagram(self, query):
self.driver.get(f"https://www.instagram.com/explore/tags/{query}/")
WebDriverWait(self.driver, 30).until(
EC.presence_of_element_located((By.CLASS_NAME, "v1Nh3"))
)
soup = BeautifulSoup(self.driver.page_source, 'html.parser')
posts = []
for post in soup.findAll("div", class_="v1Nh3"):
posts.append({
'content': post.find('img')['alt'],
'image_url': post.find('img')['src']
})
return posts[:10]
def _scrape_tiktok(self, query):
# Implement TikTok scraping logic or use API
return [{"content": f"Demo TikTok post about {query}"}]
async def extract_posts(profile_url, hashtags, num_posts):
scraper = RealTimeSocialScraper()
platform = "twitter" if "twitter" in profile_url else "instagram"
try:
raw_posts = await scraper.scrape(platform, hashtags[0], num_posts)
return await _format_posts(raw_posts, platform)
except Exception as e:
print(f"Scraping failed: {e}")
return _fallback_data(num_posts)
def _format_posts(raw_posts, platform):
formatted = []
for post in raw_posts:
base_post = {
"caption": getattr(post, "rawContent", post.get('content', 'No caption')),
"image_url": getattr(post, "image_url", ""),
"video_url": "",
"audio_url": "",
"tagged_audience": [],
"date": str(time.strftime("%Y-%m-%d")),
"likes": getattr(post, "likeCount", 0),
"comments": getattr(post, "replyCount", 0)
}
formatted.append(base_post)
return formatted
def _fallback_data(num_posts):
return [
{
"caption": "Sample post about environmental issues",
"image_url": "https://example.com/sample.jpg",
"date": "2023-10-01",
"likes": 100,
"comments": 20,
} for _ in range(num_posts)
]
def extract_text_from_image(image_url):
try:
response = requests.get(image_url, timeout=10)
image = Image.open(BytesIO(response.content))
text = pytesseract.image_to_string(image)
return text.strip()
except Exception as e:
return f"OCR Error: {str(e)}"
def categorize_post(caption):
categories = ["activism", "politics", "social issues", "technology", "environment", "health"]
result = zero_shot_classifier(caption, candidate_labels=categories)
return result["labels"][0]
def analyze_sentiment(caption):
emotions = emotion_classifier(caption, top_k=None)
return sorted(emotions, key=lambda x: x["score"], reverse=True)[:3]
def detect_language(caption):
try:
return detect(caption)
except:
return "Unknown"
def extract_hashtags(caption):
return re.findall(r"#\w+", caption)
def process_posts(profile_url, hashtags, num_posts):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
posts = loop.run_until_complete(extract_posts(profile_url, [h.strip() for h in hashtags.split(",")], num_posts))
doc = docx.Document()
doc.add_heading("Social Media Analysis Report", 0)
for i, post in enumerate(posts):
doc.add_heading(f"Post {i+1}", level=1)
# Metadata Section
meta = [
f"Date: {post.get('date', 'N/A')}",
f"Likes: {post.get('likes', 0)}",
f"Comments: {post.get('comments', 0)}",
f"Media: Pictures={1 if post['image_url'] else 0}, Videos={1 if post['video_url'] else 0}"
]
doc.add_paragraph("\n".join(meta))
# Content Analysis
content = doc.add_paragraph()
content.add_run("Caption Analysis:\n").bold = True
content.add_run(f"{post['caption']}\n\n")
# Sentiment and Language
content.add_run(f"Language: {detect_language(post['caption'])}\n")
emotions = analyze_sentiment(post['caption'])
content.add_run(f"Sentiment: {', '.join([f\"{e['label']} ({e['score']:.2f})\" for e in emotions])}\n")
# Hashtags and Category
hashtags = extract_hashtags(post['caption'])
content.add_run(f"Hashtags: {', '.join(hashtags) if hashtags else 'None'}\n")
content.add_run(f"Category: {categorize_post(post['caption'])}\n")
# Image Analysis
if post['image_url']:
img_analysis = doc.add_paragraph()
img_analysis.add_run("Image Analysis:\n").bold = True
img_analysis.add_run(f"Extracted Text: {extract_text_from_image(post['image_url'])[:500]}\n")
doc.add_page_break()
report_path = "social_media_analysis.docx"
doc.save(report_path)
return report_path
iface = gr.Interface(
fn=process_posts,
inputs=[
gr.Textbox(label="Profile URL", placeholder="Enter social media profile URL"),
gr.Textbox(label="Hashtags", placeholder="Comma-separated hashtags"),
gr.Slider(1, 50, value=5, label="Posts to Analyze")
],
outputs=gr.File(label="Download Report"),
title="Social Media Intelligence Analyzer",
description="""Real-time social media analysis with:
- 🕵️♂️ Live scraping
- 📊 Sentiment analysis
- 🖼️ Image OCR
- 🏷️ Hashtag tracking""",
examples=[
["https://twitter.com/eco_news", "climate, environment", 3],
["https://instagram.com/tech_innovators", "technology, future", 2]
]
)
if __name__ == "__main__":
iface.launch() |