File size: 8,624 Bytes
706fc89
 
 
 
 
7ddff49
 
706fc89
 
 
 
 
7ddff49
 
 
 
 
 
 
 
 
 
 
 
706fc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ddff49
706fc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ddff49
706fc89
 
 
7ddff49
706fc89
 
7ddff49
 
 
 
 
 
706fc89
 
 
 
7ddff49
706fc89
 
 
 
 
 
 
 
7ddff49
706fc89
 
 
7ddff49
706fc89
 
 
 
7ddff49
 
 
706fc89
7ddff49
 
 
706fc89
7ddff49
706fc89
 
 
 
 
 
 
 
 
 
 
 
 
 
7ddff49
706fc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ddff49
706fc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ddff49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import streamlit as st
import re
from langdetect import detect
from transformers import pipeline
import nltk
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from docx import Document
import io

# Download required NLTK resources
nltk.download('punkt')
nltk.download('wordnet')

# Initialize Lemmatizer
lemmatizer = WordNetLemmatizer()

# Cache model to avoid reloading on every function call
@st.cache_resource
def load_pipeline():
    return pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

tone_model = load_pipeline()
frame_model = load_pipeline()

# Updated tone categories
tone_categories = {
    "Emotional": ["urgent", "violence", "disappearances", "forced", "killing", "crisis"],
    "Critical": ["corrupt", "oppression", "failure", "repression", "unjust"],
    "Somber": ["tragedy", "loss", "pain", "sorrow", "mourning", "grief"],
    "Motivational": ["rise", "resist", "mobilize", "inspire", "courage", "change"],
    "Informative": ["announcement", "event", "scheduled", "update", "details"],
    "Positive": ["progress", "unity", "hope", "victory", "solidarity"],
    "Urgent": ["urgent", "violence", "disappearances", "forced", "killing", "concern", "crisis"],
    "Harsh": ["corrupt", "oppression", "failure", "repression", "exploit", "unjust"],
    "Negative": ["tragedy", "loss", "pain", "sorrow", "mourning", "grief"],
    "Empowering": ["rise", "resist", "mobilize", "inspire", "courage", "change"],
    "Neutral": ["announcement", "event", "scheduled", "update", "details", "protest on"],
    "Hopeful": ["progress", "unity", "hope", "victory", "together", "solidarity"]
}

# Updated frame categories (Limited to 4 selections)
frame_categories = {
    "Human Rights & Justice": ["rights", "law", "justice", "legal", "humanitarian"],
    "Political & State Accountability": ["government", "policy", "state", "corruption", "accountability"],
    "Gender & Patriarchy": ["gender", "women", "violence", "patriarchy", "equality"],
    "Religious Freedom & Persecution": ["religion", "persecution", "minorities", "intolerance", "faith"],
    "Grassroots Mobilization": ["activism", "community", "movement", "local", "mobilization"],
    "Environmental Crisis & Activism": ["climate", "deforestation", "water", "pollution", "sustainability"],
    "Anti-Extremism & Anti-Violence": ["extremism", "violence", "hate speech", "radicalism", "mob attack"],
    "Social Inequality & Economic Disparities": ["class privilege", "labor rights", "economic", "discrimination"],
    "Activism & Advocacy": ["justice", "rights", "demand", "protest", "march", "campaign", "freedom of speech"],
    "Systemic Oppression": ["discrimination", "oppression", "minorities", "marginalized", "exclusion"],
    "Intersectionality": ["intersecting", "women", "minorities", "struggles", "multiple oppression"],
    "Call to Action": ["join us", "sign petition", "take action", "mobilize", "support movement"],
    "Empowerment & Resistance": ["empower", "resist", "challenge", "fight for", "stand up"],
    "Climate Justice": ["environment", "climate change", "sustainability", "biodiversity", "pollution"],
    "Human Rights Advocacy": ["human rights", "violations", "honor killing", "workplace discrimination", "law reform"]
}

# Language detection
def detect_language(text):
    try:
        return detect(text)
    except Exception:
        return "unknown"

# NLP-based keyword matching with lemmatization
def contains_keywords(text, keywords):
    words = word_tokenize(text.lower())
    lemmatized_words = [lemmatizer.lemmatize(word) for word in words]
    return any(keyword in lemmatized_words for keyword in keywords)

# Analyze tone based on predefined categories
def analyze_tone(text):
    detected_tones = set()
    for category, keywords in tone_categories.items():
        if contains_keywords(text, keywords):
            detected_tones.add(category)

    if not detected_tones:
        model_result = tone_model(text, candidate_labels=list(tone_categories.keys()))
        detected_tones.update(model_result["labels"][:2])  

    return list(detected_tones)

# Extract frames based on predefined categories (Limit to 4)
def extract_frames(text):
    detected_frames = set()
    for category, keywords in frame_categories.items():
        if contains_keywords(text, keywords):
            detected_frames.add(category)

    if not detected_frames:
        model_result = frame_model(text, candidate_labels=list(frame_categories.keys()))
        detected_frames.update(model_result["labels"][:4])  

    return list(detected_frames)[:4]  # Ensure no more than 4 frames are selected

# Extract hashtags
def extract_hashtags(text):
    return re.findall(r"#\w+", text)

# Extract captions from DOCX file
def extract_captions_from_docx(docx_file):
    doc = Document(docx_file)
    captions = {}
    current_post = None
    for para in doc.paragraphs:
        text = para.text.strip()
        if re.match(r"Post \d+", text, re.IGNORECASE):
            current_post = text
            captions[current_post] = []
        elif current_post:
            captions[current_post].append(text)

    return {post: " ".join(lines) for post, lines in captions.items() if lines}

# Generate a DOCX file in-memory
def generate_docx(output_data):
    doc = Document()
    doc.add_heading('Activism Message Analysis', 0)

    for index, (caption, result) in enumerate(output_data.items(), start=1):
        doc.add_heading(f"{index}. {caption}", level=1)
        doc.add_paragraph("Full Caption:")
        doc.add_paragraph(result['Full Caption'], style="Quote")

        doc.add_paragraph(f"Language: {result['Language']}")
        doc.add_paragraph(f"Tone of Caption: {', '.join(result['Tone of Caption'])}")
        doc.add_paragraph(f"Number of Hashtags: {result['Hashtag Count']}")
        doc.add_paragraph(f"Hashtags Found: {', '.join(result['Hashtags'])}")

        doc.add_heading('Frames:', level=2)
        for frame in result['Frames']:
            doc.add_paragraph(frame)

    doc_io = io.BytesIO()
    doc.save(doc_io)
    doc_io.seek(0)

    return doc_io

# Streamlit app
st.title('AI-Powered Activism Message Analyzer')

st.write("Enter the text to analyze or upload a DOCX file containing captions:")

# Text Input
input_text = st.text_area("Input Text", height=200)

# File Upload
uploaded_file = st.file_uploader("Upload a DOCX file", type=["docx"])

# Initialize output dictionary
output_data = {}

if input_text:
    language = detect_language(input_text)
    tone = analyze_tone(input_text)
    hashtags = extract_hashtags(input_text)
    frames = extract_frames(input_text)

    output_data["Manual Input"] = {
        'Full Caption': input_text,
        'Language': language,
        'Tone of Caption': tone,
        'Hashtags': hashtags,
        'Hashtag Count': len(hashtags),
        'Frames': frames
    }

    st.success("Analysis completed for text input.")

if uploaded_file:
    captions = extract_captions_from_docx(uploaded_file)
    for caption, text in captions.items():
        language = detect_language(text)
        tone = analyze_tone(text)
        hashtags = extract_hashtags(text)
        frames = extract_frames(text)

        output_data[caption] = {
            'Full Caption': text,
            'Language': language,
            'Tone of Caption': tone,
            'Hashtags': hashtags,
            'Hashtag Count': len(hashtags),
            'Frames': frames
        }

    st.success(f"Analysis completed for {len(captions)} posts from the DOCX file.")

# Display results
if output_data:
    with st.expander("Generated Output"):
        st.subheader("Analysis Results")
        for index, (caption, result) in enumerate(output_data.items(), start=1):
            st.write(f"### {index}. {caption}")
            st.write("**Full Caption:**")
            st.write(f"> {result['Full Caption']}")
            st.write(f"**Language**: {result['Language']}")
            st.write(f"**Tone of Caption**: {', '.join(result['Tone of Caption'])}")
            st.write(f"**Number of Hashtags**: {result['Hashtag Count']}")
            st.write(f"**Hashtags Found:** {', '.join(result['Hashtags'])}")
            st.write("**Frames**:")
            for frame in result['Frames']:
                st.write(f"- {frame}")

    docx_file = generate_docx(output_data)

    if docx_file:
        st.download_button(
            label="Download Analysis as DOCX",
            data=docx_file,
            file_name="activism_message_analysis.docx",
            mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
        )