import cv2 import torch import numpy as np import time from midas.model_loader import default_models, load_model import os import urllib.request import spaces MODEL_FILE_URL = { "midas_v21_small_256" : "https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt", "dpt_hybrid_384" : "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid_384.pt", "dpt_large_384" : "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_large_384.pt", "dpt_swin2_large_384" : "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_large_384.pt", "dpt_beit_large_512" : "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt", } class MonocularDepthEstimator: def __init__(self, model_type="midas_v21_small_256", model_weights_path="models/", optimize=False, side_by_side=False, height=None, square=False, grayscale=False): # Don't initialize any CUDA/GPU stuff here self.model_type = model_type self.model_weights_path = model_weights_path self.is_optimize = optimize self.is_square = square self.is_grayscale = grayscale self.height = height self.side_by_side = side_by_side self.model = None self.transform = None self.net_w = None self.net_h = None print("Initializing parameters...") if not os.path.exists(model_weights_path+model_type+".pt"): print("Model file not found. Downloading...") urllib.request.urlretrieve(MODEL_FILE_URL[model_type], model_weights_path+model_type+".pt") print("Model file downloaded successfully.") @spaces.GPU def load_model_if_needed(self): if self.model is None: print("Loading MiDaS model...") self.model, self.transform, self.net_w, self.net_h = load_model( 'cuda', self.model_weights_path + self.model_type + ".pt", self.model_type, self.is_optimize, self.height, self.is_square ) print("Model loaded successfully") @spaces.GPU def predict(self, image, target_size): self.load_model_if_needed() img_tensor = torch.from_numpy(image).to('cuda').unsqueeze(0) if self.is_optimize: img_tensor = img_tensor.to(memory_format=torch.channels_last) img_tensor = img_tensor.half() with torch.no_grad(): prediction = self.model.forward(img_tensor) prediction = ( torch.nn.functional.interpolate( prediction.unsqueeze(1), size=target_size[::-1], mode="bicubic", align_corners=False, ) .squeeze() .cpu() .numpy() ) return prediction def process_prediction(self, depth_map): depth_min = depth_map.min() depth_max = depth_map.max() normalized_depth = 255 * (depth_map - depth_min) / (depth_max - depth_min) grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2) depth_colormap = cv2.applyColorMap(np.uint8(grayscale_depthmap), cv2.COLORMAP_INFERNO) return normalized_depth/255, depth_colormap/255 @spaces.GPU def make_prediction(self, image): try: print("Starting depth estimation...") image = image.copy() original_image_rgb = np.flip(image, 2) self.load_model_if_needed() image_tranformed = self.transform({"image": original_image_rgb/255})["image"] pred = self.predict(image_tranformed, target_size=original_image_rgb.shape[1::-1]) depthmap, depth_colormap = self.process_prediction(pred) print("Depth estimation complete") return depthmap, depth_colormap except Exception as e: print(f"Error in make_prediction: {str(e)}") import traceback print(traceback.format_exc()) raise if __name__ == "__main__": depth_estimator = MonocularDepthEstimator(model_type="dpt_hybrid_384") depth_estimator.run("assets/videos/testvideo2.mp4")