|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import timm | 
					
						
						|  | import types | 
					
						
						|  | import math | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  |  | 
					
						
						|  | from .utils import (activations, forward_adapted_unflatten, get_activation, get_readout_oper, | 
					
						
						|  | make_backbone_default, Transpose) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward_vit(pretrained, x): | 
					
						
						|  | return forward_adapted_unflatten(pretrained, x, "forward_flex") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _resize_pos_embed(self, posemb, gs_h, gs_w): | 
					
						
						|  | posemb_tok, posemb_grid = ( | 
					
						
						|  | posemb[:, : self.start_index], | 
					
						
						|  | posemb[0, self.start_index:], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | gs_old = int(math.sqrt(len(posemb_grid))) | 
					
						
						|  |  | 
					
						
						|  | posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) | 
					
						
						|  | posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") | 
					
						
						|  | posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) | 
					
						
						|  |  | 
					
						
						|  | posemb = torch.cat([posemb_tok, posemb_grid], dim=1) | 
					
						
						|  |  | 
					
						
						|  | return posemb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward_flex(self, x): | 
					
						
						|  | b, c, h, w = x.shape | 
					
						
						|  |  | 
					
						
						|  | pos_embed = self._resize_pos_embed( | 
					
						
						|  | self.pos_embed, h // self.patch_size[1], w // self.patch_size[0] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | B = x.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.patch_embed, "backbone"): | 
					
						
						|  | x = self.patch_embed.backbone(x) | 
					
						
						|  | if isinstance(x, (list, tuple)): | 
					
						
						|  | x = x[-1] | 
					
						
						|  |  | 
					
						
						|  | x = self.patch_embed.proj(x).flatten(2).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | if getattr(self, "dist_token", None) is not None: | 
					
						
						|  | cls_tokens = self.cls_token.expand( | 
					
						
						|  | B, -1, -1 | 
					
						
						|  | ) | 
					
						
						|  | dist_token = self.dist_token.expand(B, -1, -1) | 
					
						
						|  | x = torch.cat((cls_tokens, dist_token, x), dim=1) | 
					
						
						|  | else: | 
					
						
						|  | if self.no_embed_class: | 
					
						
						|  | x = x + pos_embed | 
					
						
						|  | cls_tokens = self.cls_token.expand( | 
					
						
						|  | B, -1, -1 | 
					
						
						|  | ) | 
					
						
						|  | x = torch.cat((cls_tokens, x), dim=1) | 
					
						
						|  |  | 
					
						
						|  | if not self.no_embed_class: | 
					
						
						|  | x = x + pos_embed | 
					
						
						|  | x = self.pos_drop(x) | 
					
						
						|  |  | 
					
						
						|  | for blk in self.blocks: | 
					
						
						|  | x = blk(x) | 
					
						
						|  |  | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  |  | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _make_vit_b16_backbone( | 
					
						
						|  | model, | 
					
						
						|  | features=[96, 192, 384, 768], | 
					
						
						|  | size=[384, 384], | 
					
						
						|  | hooks=[2, 5, 8, 11], | 
					
						
						|  | vit_features=768, | 
					
						
						|  | use_readout="ignore", | 
					
						
						|  | start_index=1, | 
					
						
						|  | start_index_readout=1, | 
					
						
						|  | ): | 
					
						
						|  | pretrained = make_backbone_default(model, features, size, hooks, vit_features, use_readout, start_index, | 
					
						
						|  | start_index_readout) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) | 
					
						
						|  | pretrained.model._resize_pos_embed = types.MethodType( | 
					
						
						|  | _resize_pos_embed, pretrained.model | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return pretrained | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None): | 
					
						
						|  | model = timm.create_model("vit_large_patch16_384", pretrained=pretrained) | 
					
						
						|  |  | 
					
						
						|  | hooks = [5, 11, 17, 23] if hooks == None else hooks | 
					
						
						|  | return _make_vit_b16_backbone( | 
					
						
						|  | model, | 
					
						
						|  | features=[256, 512, 1024, 1024], | 
					
						
						|  | hooks=hooks, | 
					
						
						|  | vit_features=1024, | 
					
						
						|  | use_readout=use_readout, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None): | 
					
						
						|  | model = timm.create_model("vit_base_patch16_384", pretrained=pretrained) | 
					
						
						|  |  | 
					
						
						|  | hooks = [2, 5, 8, 11] if hooks == None else hooks | 
					
						
						|  | return _make_vit_b16_backbone( | 
					
						
						|  | model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _make_vit_b_rn50_backbone( | 
					
						
						|  | model, | 
					
						
						|  | features=[256, 512, 768, 768], | 
					
						
						|  | size=[384, 384], | 
					
						
						|  | hooks=[0, 1, 8, 11], | 
					
						
						|  | vit_features=768, | 
					
						
						|  | patch_size=[16, 16], | 
					
						
						|  | number_stages=2, | 
					
						
						|  | use_vit_only=False, | 
					
						
						|  | use_readout="ignore", | 
					
						
						|  | start_index=1, | 
					
						
						|  | ): | 
					
						
						|  | pretrained = nn.Module() | 
					
						
						|  |  | 
					
						
						|  | pretrained.model = model | 
					
						
						|  |  | 
					
						
						|  | used_number_stages = 0 if use_vit_only else number_stages | 
					
						
						|  | for s in range(used_number_stages): | 
					
						
						|  | pretrained.model.patch_embed.backbone.stages[s].register_forward_hook( | 
					
						
						|  | get_activation(str(s + 1)) | 
					
						
						|  | ) | 
					
						
						|  | for s in range(used_number_stages, 4): | 
					
						
						|  | pretrained.model.blocks[hooks[s]].register_forward_hook(get_activation(str(s + 1))) | 
					
						
						|  |  | 
					
						
						|  | pretrained.activations = activations | 
					
						
						|  |  | 
					
						
						|  | readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) | 
					
						
						|  |  | 
					
						
						|  | for s in range(used_number_stages): | 
					
						
						|  | value = nn.Sequential(nn.Identity(), nn.Identity(), nn.Identity()) | 
					
						
						|  | exec(f"pretrained.act_postprocess{s + 1}=value") | 
					
						
						|  | for s in range(used_number_stages, 4): | 
					
						
						|  | if s < number_stages: | 
					
						
						|  | final_layer = nn.ConvTranspose2d( | 
					
						
						|  | in_channels=features[s], | 
					
						
						|  | out_channels=features[s], | 
					
						
						|  | kernel_size=4 // (2 ** s), | 
					
						
						|  | stride=4 // (2 ** s), | 
					
						
						|  | padding=0, | 
					
						
						|  | bias=True, | 
					
						
						|  | dilation=1, | 
					
						
						|  | groups=1, | 
					
						
						|  | ) | 
					
						
						|  | elif s > number_stages: | 
					
						
						|  | final_layer = nn.Conv2d( | 
					
						
						|  | in_channels=features[3], | 
					
						
						|  | out_channels=features[3], | 
					
						
						|  | kernel_size=3, | 
					
						
						|  | stride=2, | 
					
						
						|  | padding=1, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | final_layer = None | 
					
						
						|  |  | 
					
						
						|  | layers = [ | 
					
						
						|  | readout_oper[s], | 
					
						
						|  | Transpose(1, 2), | 
					
						
						|  | nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | 
					
						
						|  | nn.Conv2d( | 
					
						
						|  | in_channels=vit_features, | 
					
						
						|  | out_channels=features[s], | 
					
						
						|  | kernel_size=1, | 
					
						
						|  | stride=1, | 
					
						
						|  | padding=0, | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  | if final_layer is not None: | 
					
						
						|  | layers.append(final_layer) | 
					
						
						|  |  | 
					
						
						|  | value = nn.Sequential(*layers) | 
					
						
						|  | exec(f"pretrained.act_postprocess{s + 1}=value") | 
					
						
						|  |  | 
					
						
						|  | pretrained.model.start_index = start_index | 
					
						
						|  | pretrained.model.patch_size = patch_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pretrained.model._resize_pos_embed = types.MethodType( | 
					
						
						|  | _resize_pos_embed, pretrained.model | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return pretrained | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _make_pretrained_vitb_rn50_384( | 
					
						
						|  | pretrained, use_readout="ignore", hooks=None, use_vit_only=False | 
					
						
						|  | ): | 
					
						
						|  | model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained) | 
					
						
						|  |  | 
					
						
						|  | hooks = [0, 1, 8, 11] if hooks == None else hooks | 
					
						
						|  | return _make_vit_b_rn50_backbone( | 
					
						
						|  | model, | 
					
						
						|  | features=[256, 512, 768, 768], | 
					
						
						|  | size=[384, 384], | 
					
						
						|  | hooks=hooks, | 
					
						
						|  | use_vit_only=use_vit_only, | 
					
						
						|  | use_readout=use_readout, | 
					
						
						|  | ) | 
					
						
						|  |  |