import streamlit as st from transformers import pipeline from PIL import Image from streamlit_extras.add_vertical_space import add_vertical_space flower_pipeline = pipeline(task="image-classification", model="microsoft/resnet-50") st.set_page_config(page_title="Flower Identifier 🌸", layout="wide", page_icon="🌼") st.markdown( """

Flower Identifier 🌸

Snap it, upload it, and identify the bloom!

""", unsafe_allow_html=True ) file_name = st.file_uploader("Upload a flower image 📸", type=["jpg", "jpeg", "png"]) add_vertical_space(1) if file_name is not None: col1, col2 = st.columns([1, 2]) image = Image.open(file_name) col1.image( image, use_container_width=True, caption="Uploaded Image", output_format="auto" ) predictions = flower_pipeline(image) col2.markdown("### 🌺 Predictions & Confidence Levels") for p in predictions: col2.write(f"**{p['label']}**") col2.progress(p["score"]) st.markdown( """

Powered by AgentsValley 🌿

""", unsafe_allow_html=True )