|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import mimetypes | 
					
						
						|  | import os | 
					
						
						|  | import re | 
					
						
						|  | import shutil | 
					
						
						|  | from typing import Optional | 
					
						
						|  |  | 
					
						
						|  | from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types | 
					
						
						|  | from smolagents.agents import ActionStep, MultiStepAgent | 
					
						
						|  | from smolagents.memory import MemoryStep | 
					
						
						|  | from smolagents.utils import _is_package_available | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def pull_messages_from_step( | 
					
						
						|  | step_log: MemoryStep, | 
					
						
						|  | ): | 
					
						
						|  | """Extract ChatMessage objects from agent steps with proper nesting""" | 
					
						
						|  | import gradio as gr | 
					
						
						|  |  | 
					
						
						|  | if isinstance(step_log, ActionStep): | 
					
						
						|  |  | 
					
						
						|  | step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "" | 
					
						
						|  | yield gr.ChatMessage(role="assistant", content=f"**{step_number}**") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hasattr(step_log, "model_output") and step_log.model_output is not None: | 
					
						
						|  |  | 
					
						
						|  | model_output = step_log.model_output.strip() | 
					
						
						|  |  | 
					
						
						|  | model_output = re.sub(r"```\s*<end_code>", "```", model_output) | 
					
						
						|  | model_output = re.sub(r"<end_code>\s*```", "```", model_output) | 
					
						
						|  | model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) | 
					
						
						|  | model_output = model_output.strip() | 
					
						
						|  | yield gr.ChatMessage(role="assistant", content=model_output) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None: | 
					
						
						|  | first_tool_call = step_log.tool_calls[0] | 
					
						
						|  | used_code = first_tool_call.name == "python_interpreter" | 
					
						
						|  | parent_id = f"call_{len(step_log.tool_calls)}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | args = first_tool_call.arguments | 
					
						
						|  | if isinstance(args, dict): | 
					
						
						|  | content = str(args.get("answer", str(args))) | 
					
						
						|  | else: | 
					
						
						|  | content = str(args).strip() | 
					
						
						|  |  | 
					
						
						|  | if used_code: | 
					
						
						|  |  | 
					
						
						|  | content = re.sub(r"```.*?\n", "", content) | 
					
						
						|  | content = re.sub(r"\s*<end_code>\s*", "", content) | 
					
						
						|  | content = content.strip() | 
					
						
						|  | if not content.startswith("```python"): | 
					
						
						|  | content = f"```python\n{content}\n```" | 
					
						
						|  |  | 
					
						
						|  | parent_message_tool = gr.ChatMessage( | 
					
						
						|  | role="assistant", | 
					
						
						|  | content=content, | 
					
						
						|  | metadata={ | 
					
						
						|  | "title": f"🛠️ Used tool {first_tool_call.name}", | 
					
						
						|  | "id": parent_id, | 
					
						
						|  | "status": "pending", | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | yield parent_message_tool | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hasattr(step_log, "observations") and ( | 
					
						
						|  | step_log.observations is not None and step_log.observations.strip() | 
					
						
						|  | ): | 
					
						
						|  | log_content = step_log.observations.strip() | 
					
						
						|  | if log_content: | 
					
						
						|  | log_content = re.sub(r"^Execution logs:\s*", "", log_content) | 
					
						
						|  | yield gr.ChatMessage( | 
					
						
						|  | role="assistant", | 
					
						
						|  | content=f"{log_content}", | 
					
						
						|  | metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"}, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hasattr(step_log, "error") and step_log.error is not None: | 
					
						
						|  | yield gr.ChatMessage( | 
					
						
						|  | role="assistant", | 
					
						
						|  | content=str(step_log.error), | 
					
						
						|  | metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"}, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | parent_message_tool.metadata["status"] = "done" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif hasattr(step_log, "error") and step_log.error is not None: | 
					
						
						|  | yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | step_footnote = f"{step_number}" | 
					
						
						|  | if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"): | 
					
						
						|  | token_str = ( | 
					
						
						|  | f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}" | 
					
						
						|  | ) | 
					
						
						|  | step_footnote += token_str | 
					
						
						|  | if hasattr(step_log, "duration"): | 
					
						
						|  | step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None | 
					
						
						|  | step_footnote += step_duration | 
					
						
						|  | step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """ | 
					
						
						|  | yield gr.ChatMessage(role="assistant", content=f"{step_footnote}") | 
					
						
						|  | yield gr.ChatMessage(role="assistant", content="-----") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def stream_to_gradio( | 
					
						
						|  | agent, | 
					
						
						|  | task: str, | 
					
						
						|  | reset_agent_memory: bool = False, | 
					
						
						|  | additional_args: Optional[dict] = None, | 
					
						
						|  | ): | 
					
						
						|  | """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" | 
					
						
						|  | if not _is_package_available("gradio"): | 
					
						
						|  | raise ModuleNotFoundError( | 
					
						
						|  | "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" | 
					
						
						|  | ) | 
					
						
						|  | import gradio as gr | 
					
						
						|  |  | 
					
						
						|  | total_input_tokens = 0 | 
					
						
						|  | total_output_tokens = 0 | 
					
						
						|  |  | 
					
						
						|  | for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): | 
					
						
						|  |  | 
					
						
						|  | if hasattr(agent.model, "last_input_token_count"): | 
					
						
						|  | total_input_tokens += agent.model.last_input_token_count | 
					
						
						|  | total_output_tokens += agent.model.last_output_token_count | 
					
						
						|  | if isinstance(step_log, ActionStep): | 
					
						
						|  | step_log.input_token_count = agent.model.last_input_token_count | 
					
						
						|  | step_log.output_token_count = agent.model.last_output_token_count | 
					
						
						|  |  | 
					
						
						|  | for message in pull_messages_from_step( | 
					
						
						|  | step_log, | 
					
						
						|  | ): | 
					
						
						|  | yield message | 
					
						
						|  |  | 
					
						
						|  | final_answer = step_log | 
					
						
						|  | final_answer = handle_agent_output_types(final_answer) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(final_answer, AgentText): | 
					
						
						|  | yield gr.ChatMessage( | 
					
						
						|  | role="assistant", | 
					
						
						|  | content=f"**Final answer:**\n{final_answer.to_string()}\n", | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(final_answer, AgentImage): | 
					
						
						|  | yield gr.ChatMessage( | 
					
						
						|  | role="assistant", | 
					
						
						|  | content={"path": final_answer.to_string(), "mime_type": "image/png"}, | 
					
						
						|  | ) | 
					
						
						|  | elif isinstance(final_answer, AgentAudio): | 
					
						
						|  | yield gr.ChatMessage( | 
					
						
						|  | role="assistant", | 
					
						
						|  | content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GradioUI: | 
					
						
						|  | """A one-line interface to launch your agent in Gradio""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None): | 
					
						
						|  | if not _is_package_available("gradio"): | 
					
						
						|  | raise ModuleNotFoundError( | 
					
						
						|  | "Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`" | 
					
						
						|  | ) | 
					
						
						|  | self.agent = agent | 
					
						
						|  | self.file_upload_folder = file_upload_folder | 
					
						
						|  | if self.file_upload_folder is not None: | 
					
						
						|  | if not os.path.exists(file_upload_folder): | 
					
						
						|  | os.mkdir(file_upload_folder) | 
					
						
						|  |  | 
					
						
						|  | def interact_with_agent(self, prompt, messages): | 
					
						
						|  | import gradio as gr | 
					
						
						|  |  | 
					
						
						|  | messages.append(gr.ChatMessage(role="user", content=prompt)) | 
					
						
						|  | yield messages | 
					
						
						|  | for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False): | 
					
						
						|  | messages.append(msg) | 
					
						
						|  | yield messages | 
					
						
						|  | yield messages | 
					
						
						|  |  | 
					
						
						|  | def upload_file( | 
					
						
						|  | self, | 
					
						
						|  | file, | 
					
						
						|  | file_uploads_log, | 
					
						
						|  | allowed_file_types=[ | 
					
						
						|  | "application/pdf", | 
					
						
						|  | "application/vnd.openxmlformats-officedocument.wordprocessingml.document", | 
					
						
						|  | "text/plain", | 
					
						
						|  | ], | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Handle file uploads, default allowed types are .pdf, .docx, and .txt | 
					
						
						|  | """ | 
					
						
						|  | import gradio as gr | 
					
						
						|  |  | 
					
						
						|  | if file is None: | 
					
						
						|  | return gr.Textbox("No file uploaded", visible=True), file_uploads_log | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | mime_type, _ = mimetypes.guess_type(file.name) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log | 
					
						
						|  |  | 
					
						
						|  | if mime_type not in allowed_file_types: | 
					
						
						|  | return gr.Textbox("File type disallowed", visible=True), file_uploads_log | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | original_name = os.path.basename(file.name) | 
					
						
						|  | sanitized_name = re.sub( | 
					
						
						|  | r"[^\w\-.]", "_", original_name | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | type_to_ext = {} | 
					
						
						|  | for ext, t in mimetypes.types_map.items(): | 
					
						
						|  | if t not in type_to_ext: | 
					
						
						|  | type_to_ext[t] = ext | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sanitized_name = sanitized_name.split(".")[:-1] | 
					
						
						|  | sanitized_name.append("" + type_to_ext[mime_type]) | 
					
						
						|  | sanitized_name = "".join(sanitized_name) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name)) | 
					
						
						|  | shutil.copy(file.name, file_path) | 
					
						
						|  |  | 
					
						
						|  | return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] | 
					
						
						|  |  | 
					
						
						|  | def log_user_message(self, text_input, file_uploads_log): | 
					
						
						|  | return ( | 
					
						
						|  | text_input | 
					
						
						|  | + ( | 
					
						
						|  | f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" | 
					
						
						|  | if len(file_uploads_log) > 0 | 
					
						
						|  | else "" | 
					
						
						|  | ), | 
					
						
						|  | "", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def launch(self, **kwargs): | 
					
						
						|  | import gradio as gr | 
					
						
						|  |  | 
					
						
						|  | with gr.Blocks(fill_height=True) as demo: | 
					
						
						|  | stored_messages = gr.State([]) | 
					
						
						|  | file_uploads_log = gr.State([]) | 
					
						
						|  | chatbot = gr.Chatbot( | 
					
						
						|  | label="Agent", | 
					
						
						|  | type="messages", | 
					
						
						|  | avatar_images=( | 
					
						
						|  | None, | 
					
						
						|  | "https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png", | 
					
						
						|  | ), | 
					
						
						|  | resizeable=True, | 
					
						
						|  | scale=1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.file_upload_folder is not None: | 
					
						
						|  | upload_file = gr.File(label="Upload a file") | 
					
						
						|  | upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) | 
					
						
						|  | upload_file.change( | 
					
						
						|  | self.upload_file, | 
					
						
						|  | [upload_file, file_uploads_log], | 
					
						
						|  | [upload_status, file_uploads_log], | 
					
						
						|  | ) | 
					
						
						|  | text_input = gr.Textbox(lines=1, label="Chat Message") | 
					
						
						|  | text_input.submit( | 
					
						
						|  | self.log_user_message, | 
					
						
						|  | [text_input, file_uploads_log], | 
					
						
						|  | [stored_messages, text_input], | 
					
						
						|  | ).then(self.interact_with_agent, [stored_messages, chatbot], [chatbot]) | 
					
						
						|  |  | 
					
						
						|  | demo.launch(debug=True, share=True, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | __all__ = ["stream_to_gradio", "GradioUI"] |