Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,23 +1,382 @@ | |
| 1 | 
             
            import os
         | 
| 2 | 
             
            import gradio as gr
         | 
| 3 | 
             
            import requests
         | 
| 4 | 
            -
            import inspect
         | 
| 5 | 
             
            import pandas as pd
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 6 |  | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 9 | 
             
            DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
         | 
| 10 |  | 
| 11 | 
            -
            # --- Basic Agent Definition ---
         | 
| 12 | 
            -
            # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
         | 
| 13 | 
             
            class BasicAgent:
         | 
| 14 | 
             
                def __init__(self):
         | 
| 15 | 
            -
                    print(" | 
|  | |
|  | |
| 16 | 
             
                def __call__(self, question: str) -> str:
         | 
| 17 | 
            -
                     | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 21 |  | 
| 22 | 
             
            def run_and_submit_all( profile: gr.OAuthProfile | None):
         | 
| 23 | 
             
                """
         | 
|  | |
| 1 | 
             
            import os
         | 
| 2 | 
             
            import gradio as gr
         | 
| 3 | 
             
            import requests
         | 
|  | |
| 4 | 
             
            import pandas as pd
         | 
| 5 | 
            +
            from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, tool
         | 
| 6 | 
            +
            import re
         | 
| 7 | 
            +
            import json
         | 
| 8 | 
            +
            import math
         | 
| 9 | 
            +
            import tempfile
         | 
| 10 | 
            +
            from pathlib import Path
         | 
| 11 | 
            +
            from urllib.parse import urlparse, parse_qs
         | 
| 12 | 
            +
            import yt_dlp
         | 
| 13 | 
            +
            from PIL import Image
         | 
| 14 | 
            +
            import pytesseract
         | 
| 15 |  | 
| 16 | 
            +
            hf_token = os.getenv("HF_TOKEN")
         | 
| 17 | 
            +
            SPACE_ID = os.getenv("SPACE_ID")
         | 
| 18 | 
            +
            SPACE_HOST = os.getenv("SPACE_HOST")
         | 
| 19 | 
            +
            # --- OUTILS CRITIQUES POUR GAIA ---
         | 
| 20 | 
            +
            @tool
         | 
| 21 | 
            +
            def web_browser(url: str) -> str:
         | 
| 22 | 
            +
                """
         | 
| 23 | 
            +
                Fetches content from a web URL.
         | 
| 24 | 
            +
                
         | 
| 25 | 
            +
                Args:
         | 
| 26 | 
            +
                    url: The URL to fetch content from.
         | 
| 27 | 
            +
                    
         | 
| 28 | 
            +
                Returns:
         | 
| 29 | 
            +
                    Text content from the webpage.
         | 
| 30 | 
            +
                """
         | 
| 31 | 
            +
                try:
         | 
| 32 | 
            +
                    headers = {
         | 
| 33 | 
            +
                        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
         | 
| 34 | 
            +
                    }
         | 
| 35 | 
            +
                    response = requests.get(url, headers=headers, timeout=10)
         | 
| 36 | 
            +
                    response.raise_for_status()
         | 
| 37 | 
            +
                    
         | 
| 38 | 
            +
                    # Simple text extraction (you might want to use BeautifulSoup for better parsing)
         | 
| 39 | 
            +
                    content = response.text
         | 
| 40 | 
            +
                    # Basic cleaning
         | 
| 41 | 
            +
                    content = re.sub(r'<[^>]+>', ' ', content)  # Remove HTML tags
         | 
| 42 | 
            +
                    content = re.sub(r'\s+', ' ', content).strip()  # Clean whitespace
         | 
| 43 | 
            +
                    
         | 
| 44 | 
            +
                    return content[:2000] + "..." if len(content) > 2000 else content
         | 
| 45 | 
            +
                    
         | 
| 46 | 
            +
                except Exception as e:
         | 
| 47 | 
            +
                    return f"Error accessing URL: {str(e)}"
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            @tool
         | 
| 50 | 
            +
            def youtube_transcript_extractor(url: str) -> str:
         | 
| 51 | 
            +
                """
         | 
| 52 | 
            +
                Extracts transcript or information from YouTube videos.
         | 
| 53 | 
            +
                
         | 
| 54 | 
            +
                Args:
         | 
| 55 | 
            +
                    url: YouTube URL.
         | 
| 56 | 
            +
                    
         | 
| 57 | 
            +
                Returns:
         | 
| 58 | 
            +
                    Video information and transcript if available.
         | 
| 59 | 
            +
                """
         | 
| 60 | 
            +
                try:
         | 
| 61 | 
            +
                    # Extract video ID from URL
         | 
| 62 | 
            +
                    if "youtube.com/watch" in url:
         | 
| 63 | 
            +
                        video_id = parse_qs(urlparse(url).query).get('v', [None])[0]
         | 
| 64 | 
            +
                    elif "youtu.be/" in url:
         | 
| 65 | 
            +
                        video_id = urlparse(url).path[1:]
         | 
| 66 | 
            +
                    else:
         | 
| 67 | 
            +
                        return "Invalid YouTube URL format"
         | 
| 68 | 
            +
                        
         | 
| 69 | 
            +
                    if not video_id:
         | 
| 70 | 
            +
                        return "Could not extract video ID from URL"
         | 
| 71 | 
            +
                    
         | 
| 72 | 
            +
                    # Use youtube-dl to get video info
         | 
| 73 | 
            +
                    ydl_opts = {
         | 
| 74 | 
            +
                        'quiet': True,
         | 
| 75 | 
            +
                        'no_warnings': True,
         | 
| 76 | 
            +
                        'writesubtitles': True,
         | 
| 77 | 
            +
                        'writeautomaticsub': True,
         | 
| 78 | 
            +
                    }
         | 
| 79 | 
            +
                    
         | 
| 80 | 
            +
                    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
         | 
| 81 | 
            +
                        info = ydl.extract_info(f"https://www.youtube.com/watch?v={video_id}", download=False)
         | 
| 82 | 
            +
                        
         | 
| 83 | 
            +
                        result = f"Title: {info.get('title', 'N/A')}\n"
         | 
| 84 | 
            +
                        result += f"Description: {info.get('description', 'N/A')[:500]}...\n"
         | 
| 85 | 
            +
                        result += f"Duration: {info.get('duration', 'N/A')} seconds\n"
         | 
| 86 | 
            +
                        result += f"View count: {info.get('view_count', 'N/A')}\n"
         | 
| 87 | 
            +
                        
         | 
| 88 | 
            +
                        # Try to get subtitles/transcript
         | 
| 89 | 
            +
                        if 'subtitles' in info and info['subtitles']:
         | 
| 90 | 
            +
                            result += "\n--- Transcript Available ---\n"
         | 
| 91 | 
            +
                            # This is a simplified approach - you'd need more complex logic for full transcript
         | 
| 92 | 
            +
                            
         | 
| 93 | 
            +
                        return result
         | 
| 94 | 
            +
                        
         | 
| 95 | 
            +
                except Exception as e:
         | 
| 96 | 
            +
                    return f"Error extracting YouTube content: {str(e)}"
         | 
| 97 | 
            +
             | 
| 98 | 
            +
            @tool
         | 
| 99 | 
            +
            def image_ocr_analyzer(image_path: str) -> str:
         | 
| 100 | 
            +
                """
         | 
| 101 | 
            +
                Performs OCR on images to extract text.
         | 
| 102 | 
            +
                
         | 
| 103 | 
            +
                Args:
         | 
| 104 | 
            +
                    image_path: Path to the image file.
         | 
| 105 | 
            +
                    
         | 
| 106 | 
            +
                Returns:
         | 
| 107 | 
            +
                    Extracted text from the image.
         | 
| 108 | 
            +
                """
         | 
| 109 | 
            +
                try:
         | 
| 110 | 
            +
                    # Open image with PIL
         | 
| 111 | 
            +
                    image = Image.open(image_path)
         | 
| 112 | 
            +
                    
         | 
| 113 | 
            +
                    # Perform OCR
         | 
| 114 | 
            +
                    extracted_text = pytesseract.image_to_string(image)
         | 
| 115 | 
            +
                    
         | 
| 116 | 
            +
                    if not extracted_text.strip():
         | 
| 117 | 
            +
                        return "No text found in the image"
         | 
| 118 | 
            +
                        
         | 
| 119 | 
            +
                    return f"Extracted text:\n{extracted_text.strip()}"
         | 
| 120 | 
            +
                    
         | 
| 121 | 
            +
                except Exception as e:
         | 
| 122 | 
            +
                    return f"Error performing OCR: {str(e)}"
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            @tool
         | 
| 125 | 
            +
            def pdf_text_extractor(file_path: str) -> str:
         | 
| 126 | 
            +
                """
         | 
| 127 | 
            +
                Extracts text from PDF files.
         | 
| 128 | 
            +
                
         | 
| 129 | 
            +
                Args:
         | 
| 130 | 
            +
                    file_path: Path to the PDF file.
         | 
| 131 | 
            +
                    
         | 
| 132 | 
            +
                Returns:
         | 
| 133 | 
            +
                    Extracted text from PDF.
         | 
| 134 | 
            +
                """
         | 
| 135 | 
            +
                try:
         | 
| 136 | 
            +
                    import PyPDF2
         | 
| 137 | 
            +
                    
         | 
| 138 | 
            +
                    with open(file_path, 'rb') as file:
         | 
| 139 | 
            +
                        pdf_reader = PyPDF2.PdfReader(file)
         | 
| 140 | 
            +
                        text = ""
         | 
| 141 | 
            +
                        
         | 
| 142 | 
            +
                        for page_num in range(len(pdf_reader.pages)):
         | 
| 143 | 
            +
                            page = pdf_reader.pages[page_num]
         | 
| 144 | 
            +
                            text += page.extract_text() + "\n"
         | 
| 145 | 
            +
                            
         | 
| 146 | 
            +
                    return text[:3000] + "..." if len(text) > 3000 else text
         | 
| 147 | 
            +
                    
         | 
| 148 | 
            +
                except Exception as e:
         | 
| 149 | 
            +
                    return f"Error extracting PDF text: {str(e)}"
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            @tool
         | 
| 152 | 
            +
            def veterinary_document_analyzer(text: str) -> str:
         | 
| 153 | 
            +
                """
         | 
| 154 | 
            +
                Analyzes veterinary documents to extract specific information like names.
         | 
| 155 | 
            +
                
         | 
| 156 | 
            +
                Args:
         | 
| 157 | 
            +
                    text: Document text to analyze.
         | 
| 158 | 
            +
                    
         | 
| 159 | 
            +
                Returns:
         | 
| 160 | 
            +
                    Extracted veterinary information.
         | 
| 161 | 
            +
                """
         | 
| 162 | 
            +
                try:
         | 
| 163 | 
            +
                    # Look for veterinarian names and surnames
         | 
| 164 | 
            +
                    vet_patterns = [
         | 
| 165 | 
            +
                        r"Dr\.?\s+([A-Z][a-z]+)\s+([A-Z][a-z]+)",  # Dr. First Last
         | 
| 166 | 
            +
                        r"Doctor\s+([A-Z][a-z]+)\s+([A-Z][a-z]+)",  # Doctor First Last
         | 
| 167 | 
            +
                        r"veterinarian\s+([A-Z][a-z]+)\s+([A-Z][a-z]+)",  # veterinarian First Last
         | 
| 168 | 
            +
                        r"DVM\s+([A-Z][a-z]+)\s+([A-Z][a-z]+)",  # DVM First Last
         | 
| 169 | 
            +
                    ]
         | 
| 170 | 
            +
                    
         | 
| 171 | 
            +
                    found_vets = []
         | 
| 172 | 
            +
                    for pattern in vet_patterns:
         | 
| 173 | 
            +
                        matches = re.findall(pattern, text, re.IGNORECASE)
         | 
| 174 | 
            +
                        for match in matches:
         | 
| 175 | 
            +
                            full_name = f"{match[0]} {match[1]}"
         | 
| 176 | 
            +
                            if full_name not in found_vets:
         | 
| 177 | 
            +
                                found_vets.append(full_name)
         | 
| 178 | 
            +
                    
         | 
| 179 | 
            +
                    if found_vets:
         | 
| 180 | 
            +
                        return f"Found veterinarian(s): {', '.join(found_vets)}"
         | 
| 181 | 
            +
                    else:
         | 
| 182 | 
            +
                        return "No veterinarian names found in the document"
         | 
| 183 | 
            +
                        
         | 
| 184 | 
            +
                except Exception as e:
         | 
| 185 | 
            +
                    return f"Error analyzing veterinary document: {str(e)}"
         | 
| 186 | 
            +
             | 
| 187 | 
            +
            # --- Outils existants améliorés ---
         | 
| 188 | 
            +
            @tool
         | 
| 189 | 
            +
            def analyze_excel_file(file_path: str, analysis_type: str = "general") -> str:
         | 
| 190 | 
            +
                """
         | 
| 191 | 
            +
                Analyzes Excel files with multiple analysis types.
         | 
| 192 | 
            +
                """
         | 
| 193 | 
            +
                try:
         | 
| 194 | 
            +
                    df = pd.read_excel(file_path)
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                    if analysis_type == "general":
         | 
| 197 | 
            +
                        return f"Excel file contains {len(df)} rows and {len(df.columns)} columns. Columns: {list(df.columns)}"
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    elif analysis_type == "food_sales":
         | 
| 200 | 
            +
                        if 'category' in df.columns and 'price' in df.columns and 'quantity' in df.columns:
         | 
| 201 | 
            +
                            food_df = df[df['category'].str.lower() == 'food']
         | 
| 202 | 
            +
                            total_sales = (food_df['price'] * food_df['quantity']).sum()
         | 
| 203 | 
            +
                            return f"Total food sales: ${total_sales:.2f}"
         | 
| 204 | 
            +
                        else:
         | 
| 205 | 
            +
                            return "Required columns (category, price, quantity) not found"
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    elif analysis_type == "summary":
         | 
| 208 | 
            +
                        summary = df.describe(include='all').to_string()
         | 
| 209 | 
            +
                        return f"Data summary:\n{summary}"
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    elif analysis_type == "categories":
         | 
| 212 | 
            +
                        if 'category' in df.columns:
         | 
| 213 | 
            +
                            categories = df['category'].value_counts()
         | 
| 214 | 
            +
                            return f"Categories breakdown:\n{categories.to_string()}"
         | 
| 215 | 
            +
                        else:
         | 
| 216 | 
            +
                            return "No category column found"
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                    return "Unknown analysis type"
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                except Exception as e:
         | 
| 221 | 
            +
                    return f"Error analyzing Excel file: {str(e)}"
         | 
| 222 | 
            +
             | 
| 223 | 
            +
            @tool
         | 
| 224 | 
            +
            def advanced_calculator(expression: str) -> str:
         | 
| 225 | 
            +
                """
         | 
| 226 | 
            +
                Evaluates mathematical expressions safely, including advanced functions.
         | 
| 227 | 
            +
                """
         | 
| 228 | 
            +
                try:
         | 
| 229 | 
            +
                    expression = expression.replace('^', '**')
         | 
| 230 | 
            +
                    allowed_functions = {
         | 
| 231 | 
            +
                        'abs': abs, 'round': round, 'min': min, 'max': max,
         | 
| 232 | 
            +
                        'sum': sum, 'len': len,
         | 
| 233 | 
            +
                        'sqrt': math.sqrt, 'pow': math.pow, 'log': math.log,
         | 
| 234 | 
            +
                        'sin': math.sin, 'cos': math.cos, 'tan': math.tan,
         | 
| 235 | 
            +
                        'pi': math.pi, 'e': math.e,
         | 
| 236 | 
            +
                        'floor': math.floor, 'ceil': math.ceil
         | 
| 237 | 
            +
                    }
         | 
| 238 | 
            +
                    result = eval(expression, {"__builtins__": {}}, allowed_functions)
         | 
| 239 | 
            +
                    return str(result)
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                except Exception as e:
         | 
| 242 | 
            +
                    return f"Error in calculation: {str(e)}"
         | 
| 243 | 
            +
             | 
| 244 | 
            +
            @tool
         | 
| 245 | 
            +
            def smart_text_analyzer(text: str, task_type: str = "general") -> str:
         | 
| 246 | 
            +
                """
         | 
| 247 | 
            +
                Analyzes text with focus on GAIA-specific tasks.
         | 
| 248 | 
            +
                
         | 
| 249 | 
            +
                Args:
         | 
| 250 | 
            +
                    text: Text to analyze.
         | 
| 251 | 
            +
                    task_type: 'general', 'names', 'dates', 'numbers', 'veterinary'.
         | 
| 252 | 
            +
                    
         | 
| 253 | 
            +
                Returns:
         | 
| 254 | 
            +
                    Analysis results.
         | 
| 255 | 
            +
                """
         | 
| 256 | 
            +
                try:
         | 
| 257 | 
            +
                    if task_type == "names":
         | 
| 258 | 
            +
                        # Extract proper names
         | 
| 259 | 
            +
                        name_pattern = r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b'
         | 
| 260 | 
            +
                        names = re.findall(name_pattern, text)
         | 
| 261 | 
            +
                        return f"Found names: {list(set(names))}"
         | 
| 262 | 
            +
                        
         | 
| 263 | 
            +
                    elif task_type == "veterinary":
         | 
| 264 | 
            +
                        return veterinary_document_analyzer(text)
         | 
| 265 | 
            +
                        
         | 
| 266 | 
            +
                    elif task_type == "dates":
         | 
| 267 | 
            +
                        date_patterns = [
         | 
| 268 | 
            +
                            r'\d{1,2}/\d{1,2}/\d{4}',  # MM/DD/YYYY
         | 
| 269 | 
            +
                            r'\d{4}-\d{2}-\d{2}',      # YYYY-MM-DD
         | 
| 270 | 
            +
                            r'\b\w+\s+\d{1,2},\s+\d{4}\b'  # Month DD, YYYY
         | 
| 271 | 
            +
                        ]
         | 
| 272 | 
            +
                        dates = []
         | 
| 273 | 
            +
                        for pattern in date_patterns:
         | 
| 274 | 
            +
                            dates.extend(re.findall(pattern, text))
         | 
| 275 | 
            +
                        return f"Found dates: {dates}"
         | 
| 276 | 
            +
                        
         | 
| 277 | 
            +
                    elif task_type == "numbers":
         | 
| 278 | 
            +
                        numbers = re.findall(r'-?\d+\.?\d*', text)
         | 
| 279 | 
            +
                        return f"Found numbers: {[float(n) for n in numbers if n]}"
         | 
| 280 | 
            +
                        
         | 
| 281 | 
            +
                    else:
         | 
| 282 | 
            +
                        return f"Characters: {len(text)}, Words: {len(text.split())}, Lines: {len(text.splitlines())}"
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                except Exception as e:
         | 
| 285 | 
            +
                    return f"Error in text analysis: {str(e)}"
         | 
| 286 | 
            +
             | 
| 287 | 
            +
            # --- Configuration du modèle OPTIMISÉE ---
         | 
| 288 | 
            +
            # Changer pour un modèle plus léger qui ne dépasse pas ton quota
         | 
| 289 | 
            +
            model = HfApiModel(
         | 
| 290 | 
            +
                max_tokens=2048,  # Réduit pour économiser le quota
         | 
| 291 | 
            +
                temperature=0.1,
         | 
| 292 | 
            +
                model_id='microsoft/DialoGPT-medium',  # Modèle plus léger
         | 
| 293 | 
            +
                # Ou essaye: 'HuggingFaceH4/zephyr-7b-beta' si disponible
         | 
| 294 | 
            +
            )
         | 
| 295 | 
            +
             | 
| 296 | 
            +
            # --- Initialisation des outils ---
         | 
| 297 | 
            +
            search_tool = DuckDuckGoSearchTool()
         | 
| 298 | 
            +
             | 
| 299 | 
            +
            # IMPORTANT: Ajouter TOUS les outils à la liste
         | 
| 300 | 
            +
            tools = [
         | 
| 301 | 
            +
                search_tool,  # ⚠️ TU AVAIS OUBLIÉ ÇA !
         | 
| 302 | 
            +
                web_browser,
         | 
| 303 | 
            +
                youtube_transcript_extractor,
         | 
| 304 | 
            +
                image_ocr_analyzer,
         | 
| 305 | 
            +
                pdf_text_extractor,
         | 
| 306 | 
            +
                veterinary_document_analyzer,
         | 
| 307 | 
            +
                smart_text_analyzer,
         | 
| 308 | 
            +
                advanced_calculator,
         | 
| 309 | 
            +
                analyze_excel_file,
         | 
| 310 | 
            +
            ]
         | 
| 311 | 
            +
             | 
| 312 | 
            +
            # Agent avec plus d'étapes pour les tâches complexes
         | 
| 313 | 
            +
            agent_code = CodeAgent(
         | 
| 314 | 
            +
                tools=tools,
         | 
| 315 | 
            +
                model=model,
         | 
| 316 | 
            +
                max_steps=15,  # Augmenté pour les tâches complexes GAIA
         | 
| 317 | 
            +
                additional_authorized_imports=[
         | 
| 318 | 
            +
                    "os", "tempfile", "pathlib", "re", "json", "math", "pandas",
         | 
| 319 | 
            +
                    "requests", "PIL", "pytesseract", "PyPDF2", "yt_dlp"
         | 
| 320 | 
            +
                ]
         | 
| 321 | 
            +
            )
         | 
| 322 | 
             
            DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
         | 
| 323 |  | 
|  | |
|  | |
| 324 | 
             
            class BasicAgent:
         | 
| 325 | 
             
                def __init__(self):
         | 
| 326 | 
            +
                    print("Enhanced GAIA Agent initialized with web browsing capabilities.")
         | 
| 327 | 
            +
                    self.agent = agent_code
         | 
| 328 | 
            +
             | 
| 329 | 
             
                def __call__(self, question: str) -> str:
         | 
| 330 | 
            +
                    try:
         | 
| 331 | 
            +
                        # Prompt amélioré spécifiquement pour GAIA
         | 
| 332 | 
            +
                        enhanced_question = self._create_gaia_prompt(question)
         | 
| 333 | 
            +
                        
         | 
| 334 | 
            +
                        result = self.agent.run(enhanced_question)
         | 
| 335 | 
            +
                        
         | 
| 336 | 
            +
                        # Post-processing pour GAIA
         | 
| 337 | 
            +
                        cleaned_result = self._clean_gaia_result(result)
         | 
| 338 | 
            +
                        
         | 
| 339 | 
            +
                        return cleaned_result if cleaned_result else "No response generated."
         | 
| 340 | 
            +
                    
         | 
| 341 | 
            +
                    except Exception as e:
         | 
| 342 | 
            +
                        print(f"Agent error: {e}")
         | 
| 343 | 
            +
                        # Fallback strategy
         | 
| 344 | 
            +
                        try:
         | 
| 345 | 
            +
                            fallback_prompt = f"""
         | 
| 346 | 
            +
                            CRITICAL GAIA TASK: {question}
         | 
| 347 | 
            +
                            
         | 
| 348 | 
            +
                            Use available tools to find the answer. If it's a YouTube video, use youtube_transcript_extractor.
         | 
| 349 | 
            +
                            If it's about documents, use appropriate analyzers.
         | 
| 350 | 
            +
                            Be precise and direct in your final answer.
         | 
| 351 | 
            +
                            """
         | 
| 352 | 
            +
                            simple_result = self.agent.run(fallback_prompt)
         | 
| 353 | 
            +
                            return simple_result if simple_result else f"Error: {e}"
         | 
| 354 | 
            +
                        except:
         | 
| 355 | 
            +
                            return f"Error: {e}"
         | 
| 356 | 
            +
                
         | 
| 357 | 
            +
                def _create_gaia_prompt(self, question: str) -> str:
         | 
| 358 | 
            +
                    """Crée un prompt optimisé pour GAIA."""
         | 
| 359 | 
            +
                    return f"""
         | 
| 360 | 
            +
                    GAIA EVALUATION TASK - ANSWER PRECISELY
         | 
| 361 | 
            +
                    
         | 
| 362 | 
            +
                    Question: {question}
         | 
| 363 | 
            +
                    
         | 
| 364 | 
            +
                    INSTRUCTIONS:
         | 
| 365 | 
            +
                    1. If this involves a YouTube video, use youtube_transcript_extractor tool
         | 
| 366 | 
            +
                    2. If this involves web content, use web_browser tool  
         | 
| 367 | 
            +
                    3. If this involves documents/PDFs, use appropriate analyzers
         | 
| 368 | 
            +
                    4. If this involves images, use image_ocr_analyzer
         | 
| 369 | 
            +
                    5. If this needs search, use the search tool
         | 
| 370 | 
            +
                    6. For calculations, use advanced_calculator
         | 
| 371 | 
            +
                    7. Be EXACT and SPECIFIC in your final answer
         | 
| 372 | 
            +
                    8. Don't provide explanations unless asked - just the answer
         | 
| 373 | 
            +
                    
         | 
| 374 | 
            +
                    Work step by step and use the right tools for this task.
         | 
| 375 | 
            +
                    """
         | 
| 376 | 
            +
             | 
| 377 | 
            +
             | 
| 378 | 
            +
             | 
| 379 | 
            +
             | 
| 380 |  | 
| 381 | 
             
            def run_and_submit_all( profile: gr.OAuthProfile | None):
         | 
| 382 | 
             
                """
         | 
