File size: 54,615 Bytes
eba05ad
 
 
 
 
 
 
4e109a2
 
eba05ad
4e109a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf89d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eba05ad
 
 
 
 
 
6bf89d5
eba05ad
 
 
 
 
 
6bf89d5
eba05ad
 
 
 
 
6bf89d5
 
eba05ad
 
 
 
 
 
6bf89d5
eba05ad
 
 
 
 
 
6bf89d5
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8123796
eba05ad
8123796
eba05ad
8123796
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8123796
eba05ad
 
 
 
 
8123796
eba05ad
 
 
 
8123796
 
 
 
 
 
 
eba05ad
 
 
 
 
 
 
 
 
 
 
 
e4f421b
 
eba05ad
8123796
eba05ad
 
8123796
 
eba05ad
8123796
 
 
 
 
 
 
 
 
 
 
eba05ad
 
8123796
eba05ad
 
 
 
 
 
 
 
8123796
eba05ad
 
6bf89d5
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8123796
6bf89d5
 
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8123796
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf89d5
 
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf89d5
eba05ad
 
8123796
 
 
 
 
 
 
 
 
 
eba05ad
 
 
 
 
 
 
 
 
 
 
e1029b2
 
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf89d5
e4f421b
 
 
 
 
 
6bf89d5
 
 
8123796
 
 
 
 
 
f6e0f52
e4f421b
eba05ad
e4f421b
 
eba05ad
 
e4f421b
 
 
 
 
 
 
 
 
 
 
 
6bf89d5
 
8123796
6bf89d5
 
 
eba05ad
 
6bf89d5
eba05ad
 
 
 
e4f421b
 
 
 
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f421b
 
6bf89d5
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8123796
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f421b
 
 
 
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8123796
eba05ad
 
 
 
6bf89d5
 
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8123796
 
eba05ad
 
 
 
 
8123796
 
 
 
 
 
 
 
 
 
eba05ad
8123796
 
 
 
 
 
eba05ad
8123796
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf89d5
 
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8123796
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f421b
 
 
 
 
 
 
 
 
eba05ad
 
 
8123796
eba05ad
 
 
 
 
 
 
 
 
 
 
e4f421b
 
 
 
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf89d5
 
eba05ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e109a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
import gradio as gr
from gradio_modal import Modal
from huggingface_hub import hf_hub_download, list_repo_files
import os, csv, datetime, sys
import json
from utils import format_chat, append_to_sheet, read_sheet_to_df
import random
import base64
import re

def encode_image_to_base64(image_path):
    """Encodes an image file to a base64 string."""
    try:
        with open(image_path, "rb") as image_file:
            encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
        return encoded_string
    except FileNotFoundError:
        print(f"Error: Image file not found at {image_path}")
        return None

# HTML file for first page
html_file_path = "index.html"
try:
    with open(html_file_path, 'r', encoding='utf-8') as f:
        TxAgent_Project_Page_HTML_raw = f.read()
        TxAgent_Project_Page_HTML = TxAgent_Project_Page_HTML_raw

        # Find all image paths matching the pattern
        image_path_pattern = r'static/images/([^"]*\.jpg)'
        image_paths = re.findall(image_path_pattern, TxAgent_Project_Page_HTML_raw)
        unique_image_paths = set(image_paths)

        # Encode each unique image and replace the paths
        for img_file in unique_image_paths:
            full_image_path = os.path.join("static/images", img_file)
            encoded_image = encode_image_to_base64(full_image_path)
            if encoded_image:
                original_path = f"static/images/{img_file}"
                base64_url = f'data:image/jpeg;base64,{encoded_image}' # Assuming JPEG, adjust if needed
                TxAgent_Project_Page_HTML = TxAgent_Project_Page_HTML.replace(original_path, base64_url)

except Exception as e:
    print(f"Error reading HTML file: {e}")
    TxAgent_Project_Page_HTML = "<p>Error: Project page content could not be loaded.</p>"

# Load tool lists
fda_drug_labeling_tools_path = "fda_drug_labeling_tools.json"
monarch_tools_path = "monarch_tools.json"
opentarget_tools_path = "opentarget_tools.json"

try:
    with open(fda_drug_labeling_tools_path, 'r') as f:
        fda_data = json.load(f)
        fda_drug_labeling_tools_list = [item['name'] for item in fda_data if 'name' in item]
except Exception as e:
    print(f"Error processing {fda_drug_labeling_tools_path}: {e}")
    fda_drug_labeling_tools_list = ["Error loading FDA tools"]

try:
    with open(monarch_tools_path, 'r') as f:
        monarch_data = json.load(f)
        monarch_tools_list = [item['name'] for item in monarch_data if 'name' in item]
except Exception as e:
    print(f"Error processing {monarch_tools_path}: {e}")
    monarch_tools_list = ["Error loading Monarch tools"]

try:
    with open(opentarget_tools_path, 'r') as f:
        opentarget_data = json.load(f)
        opentarget_tools_list = [item['name'] for item in opentarget_data if 'name' in item]
except Exception as e:
    print(f"Error processing {opentarget_tools_path}: {e}")
    opentarget_tools_list = ["Error loading OpenTarget tools"]

#for labeling the different tool calls in format_chat
tool_database_labels = {
    "**from approved FDA drug labels**": fda_drug_labeling_tools_list,
    "**from the Monarch Initiative databases**": monarch_tools_list,
    "**from the Open Targets database**": opentarget_tools_list,
}

# Define the six evaluation criteria as a list of dictionaries.
criteria = [
    {
        "label": "Problem Resolution",
        "text": (
            "Problem Resolution: Did the model effectively solve the problem?",
            "1️⃣ Did Not Solve the Problem at All. 2️⃣ Attempted to Solve but Largely Incorrect or Incomplete. 3️⃣ Partially Solved the Problem, but with Limitations. 4️⃣ Mostly Solved the Problem, with Minor Issues. 5️⃣ Completely and Effectively Solved the Problem."
        )
    },
    {
        "label": "Helpfulness",
        "text": (
            "Helpfulness: Was the answer and reasoning provided helpful in addressing the question?",
            "1️⃣ Not Helpful at All. 2️⃣ Slightly Helpful, but Largely Insufficient. 3️⃣ Moderately Helpful, but Needs Improvement. 4️⃣ Helpful and Mostly Clear, with Minor Issues. 5️⃣ Extremely Helpful and Comprehensive."
        )
    },
    {
        "label": "Scientific Consensus",
        "text": (
            "Clinical Consensus: Does the answer align with established scientific and clinical consensus?",
            "1️⃣ Completely Misaligned with Clinical Consensus. 2️⃣ Partially Aligned but Contains Significant Inaccuracies or Misinterpretations. 3️⃣ Generally Aligned but Lacks Rigor or Clarity. 4️⃣ Mostly Aligned with Clinical Consensus, with Minor Omissions or Uncertainties. 5️⃣ Fully Aligned with Established Clinical Consensus."
        )
    },
    {
        "label": "Accuracy",
        "text": (
            "Accuracy of Content: Is there any incorrect or irrelevant content in the answer and the reasoning content?",
            "1️⃣ Completely Inaccurate or Irrelevant. 2️⃣ Mostly Inaccurate, with Some Relevant Elements. 3️⃣ Partially Accurate, but Includes Some Errors or Omissions. 4️⃣ Mostly Accurate, with Minor Issues or Unverified Claims. 5️⃣ Completely Accurate and Relevant."
        )
    },
    {
        "label": "Completeness",
        "text": (
            "Completeness: Did the answer omit any essential content necessary for a comprehensive response?",
            "1️⃣ Severely Incomplete – Major Content Omissions. 2️⃣ Largely Incomplete – Missing Key Elements. 3️⃣ Somewhat Complete – Covers Basics but Lacks Depth. 4️⃣ Mostly Complete – Minor Omissions or Gaps. 5️⃣ Fully Complete – No Important Omissions."
        )
    },
]

criteria_for_comparison = [
    {
        "label": "Problem Resolution",
        "text": (
            "Problem Resolution: Did the model effectively solve the problem?<br>"
        )
    },
    {
        "label": "Helpfulness",
        "text": (
            "Helpfulness: Was the answer and reasoning provided helpful in addressing the question?<br>"
        )
    },
    {
        "label": "Scientific Consensus",
        "text": (
            "Scientific and Clinical Consensus: Does the answer align with established scientific and clinical consensus?<br>"
        )
    },
    {
        "label": "Accuracy",
        "text": (
            "Accuracy of Content: Is there any incorrect or irrelevant content in the answer and the reasoning content?<br>"
        )
    },
    {
        "label": "Completeness",
        "text": (
            "Completeness: Did the answer omit any essential content necessary for a comprehensive response?<br>"
        )
    },
]

mapping = {   #for pairwise mapping between model comparison selections
    "πŸ‘ˆ Model A": "A",
    "πŸ‘‰ Model B": "B",
    "🀝 Tie": "tie",
    "πŸ‘Ž Neither model did well": "neither"
}

#Prepare data
REPO_ID  = "RichardZhu52/TxAgent_human_eval"
CROWDSOURCING_DATA_DIRECTORY = "crowdsourcing_eval_data_0430"
TXAGENT_RESULTS_SHEET_BASE_NAME = "TxAgent_Human_Eval_Results"
DISEASE_SPECIALTY_MAP_FILENAME = "disease_specialty_map.json"
QUESTION_MAP_FILENAME = "question_map.json"

def get_evaluator_questions(evaluator_id, all_files, evaluator_directory, question_map):

    # Filter to only the files in that directory
    evaluator_files = [f for f in all_files if f.startswith(f"{evaluator_directory}/")]
    data_by_filename = {}
    for remote_path in evaluator_files:
        local_path = hf_hub_download(
            repo_id=REPO_ID,
            repo_type="dataset",
            revision="main", #fetches the most recent version of the dataset each time this command is called
            filename=remote_path,
            # force_download=True,
        )
        with open(local_path, "r") as f:
            model_name_key = os.path.basename(remote_path).replace('.json', '')
            data_by_filename[model_name_key] = json.load(f)

    #FINALLY, MAKE SURE THEY DIDNT ALREADY FILL IT OUT. Must go through every tuple of (question_ID, TxAgent, other model) where other model could be any of the other files in data_by_filename
    model_names = [key for key in data_by_filename.keys() if key != 'txagent']
    evaluator_question_ids = question_map.get(evaluator_id).get('question_ids')
    full_question_ids_list = []
    for other_model_name in model_names:
        for q_id in evaluator_question_ids:
            full_question_ids_list.append((q_id, other_model_name))

    results_df = read_sheet_to_df(custom_sheet_name=str(TXAGENT_RESULTS_SHEET_BASE_NAME + f"_{str(evaluator_id)}"))
    if (results_df is not None) and (not results_df.empty):
        # collect all (question_ID, other_model) pairs already seen
        matched_pairs = set()
        for _, row in results_df.iterrows():
            q = row["Question ID"]
            # pick whichever response isn’t 'txagent'
            a, b = row["ResponseA_Model"], row["ResponseB_Model"]
            if a == "txagent" and b != "txagent":
                matched_pairs.add((q, b))
            elif b == "txagent" and a != "txagent":
                matched_pairs.add((q, a))

        # filter out any tuple whose (q_id, other_model) was already matched
        full_question_ids_list = [
            (q_id, other_model)
            for (q_id, other_model) in full_question_ids_list
            if (q_id, other_model) not in matched_pairs
        ]
        print(f"Filtered question IDs: {full_question_ids_list}")
        print(f"Length of filtered question IDs: {len(full_question_ids_list)}")

    return full_question_ids_list, data_by_filename

def go_to_page0_from_minus1():
    return gr.update(visible=False), gr.update(visible=True)

def go_to_eval_progress_modal(name, email, evaluator_id, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id):

    # ADDED: Validate that name and email are non-empty before proceeding
    if not name or not email or not evaluator_id or not specialty_dd or not years_exp_radio:
        return gr.update(visible=True), gr.update(visible=False), None, "Please fill out all the required fields (name, email, evaluator ID, specialty, years of experience). If you are not a licensed physician with a specific specialty, please choose the specialty that most closely aligns with your biomedical expertise.", gr.Chatbot(), gr.Chatbot(), gr.HTML(),gr.State(),gr.update(visible=False), ""

    question_map_path = hf_hub_download(
        repo_id=REPO_ID,
        filename=QUESTION_MAP_FILENAME,
        repo_type="dataset",       # or omit if it's a Model/Space
        # force_download=True,       # ← always fetch new copy
        revision="main"            # branch/tag/commit, fetches the most recent version of the dataset each time this command is called
    )

    # Load the question map from the downloaded file
    with open(question_map_path, 'r') as f:
        question_map = json.load(f)

    #retrieve data from HF
    evaluator_directory = question_map.get(evaluator_id, {}).get('evaluator_name', None)
    if evaluator_directory is None:
        return gr.update(visible=True), gr.update(visible=False), None, "Invalid Evaluator ID, please try again.", gr.Chatbot(), gr.Chatbot(), gr.HTML(),gr.State(),gr.update(visible=False),"" 
    all_files = list_repo_files(
        repo_id=REPO_ID,
        repo_type="dataset",
        revision="main",
    )

    full_question_ids_list, data_by_filename = get_evaluator_questions(evaluator_id, all_files, evaluator_directory, question_map)

    if len(full_question_ids_list) == 0:
        return gr.update(visible=True), gr.update(visible=False), None, "Based on your submitted data, you have no more questions to evaluate. You may exit the page; we will follow-up if we require anything else from you. Thank you!", gr.Chatbot(), gr.Chatbot(), gr.HTML(),gr.State(),gr.update(visible=False),""

    full_question_ids_list = sorted(full_question_ids_list, key=lambda x: str(x[0])+str(x[1]))
    #selected question is the first element
    q_id, other_model_name = full_question_ids_list[0]

    #Constructing question_for_eval, the question to evaluate this round
    txagent_matched_entry = next(
        (entry for entry in data_by_filename['txagent'] if entry.get("question_ID") == q_id),
        None
    )
    other_model_matched_entry = next(
        (entry for entry in data_by_filename[other_model_name] if entry.get("question_ID") == q_id),
        None
    )

    models_list = [
        {
            "model": "txagent",
            "reasoning_trace": txagent_matched_entry.get("solution")
        },
        {
            "model": other_model_name,
            "reasoning_trace": other_model_matched_entry.get("solution")
        }
    ]
    random.shuffle(models_list)

    question_for_eval = {
        "question": txagent_matched_entry.get("question"),
        "question_ID": q_id,
        "models": models_list,
    }

    #update user_info
    user_info = (name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, q_id, evaluator_id)
    chat_A_value = format_chat(question_for_eval['models'][0]['reasoning_trace'], tool_database_labels)
    chat_B_value = format_chat(question_for_eval['models'][1]['reasoning_trace'], tool_database_labels)
    prompt_text = question_for_eval['question']

    # Construct the question-specific elements of the pairwise rating page (page 1)
    page1_prompt = gr.HTML(f'<div style="background-color: #FFEFD5; border: 2px solid #FF8C00; padding: 10px; border-radius: 5px; color: black;"><strong style="color: black;">Prompt:</strong> {prompt_text}</div>')
    chat_a = gr.Chatbot(
                    value=chat_A_value,
                    type="messages",
                    height=400,
                    label="Model A Response",
                    show_copy_button=False,
                    show_label=True,
                    render_markdown=True,  # Required for markdown/HTML support in messages
                    avatar_images=None,    # Optional: omit user/assistant icons
                    rtl=False
                )
    chat_b = gr.Chatbot(
                    value=chat_B_value,
                    type="messages",
                    height=400,
                    label="Model B Response",
                    show_copy_button=False,
                    show_label=True,
                    render_markdown=True,  # Required for markdown/HTML support in messages
                    avatar_images=None,    # Optional: omit user/assistant icons
                    rtl=False
                )
    return gr.update(visible=True), gr.update(visible=False), user_info,"", chat_a, chat_b, page1_prompt, question_for_eval, gr.update(visible=True), f"You are about to evaluate the next question. You have {len(full_question_ids_list)} question(s) remaining to evaluate."

#goes to page 1 from confirmation modal that tells users how many questions they have left to evaluate
def go_to_page1():
    """
    Shows page 1
    """

    # Return updates to hide modal, hide page 0, show page 1, populate page 1, and set final state
    updates = [
        gr.update(visible=False),
        gr.update(visible=False),
        gr.update(visible=True),
    ]
    return updates


# Callback to transition from Page 1 to Page 2.
def go_to_page2(data_subset_state,*pairwise_values):
    # pairwise_values is a tuple of values from each radio input.
    criteria_count = len(criteria_for_comparison)
    pairwise_list = list(pairwise_values[:criteria_count])
    comparison_reasons_list = list(pairwise_values[criteria_count:])

    #gradio components to display previous page results on next page
    pairwise_results_for_display = [gr.Markdown(f"***As a reminder, your pairwise comparison answer for this criterion was: {pairwise_list[i]}. Your answer choices will be restricted based on your comparison answer, but you may go back and change the comparison answer if you wish.***") for i in range(len(criteria))]

    if any(answer is None for answer in pairwise_list):
        return gr.update(visible=True), gr.update(visible=False), None, None, "Error: Please select an option for every pairwise comparison.", gr.Chatbot(), gr.Chatbot(), gr.HTML(), *pairwise_results_for_display

    chat_A_value = format_chat(data_subset_state['models'][0]['reasoning_trace'], tool_database_labels)
    chat_B_value = format_chat(data_subset_state['models'][1]['reasoning_trace'], tool_database_labels)
    prompt_text = data_subset_state['question']

    # Construct the question-specific elements of the rating page (page 2)
    chat_A_rating = gr.Chatbot(
                    value=chat_A_value,
                    type="messages",
                    height=400,
                    label="Model A Response",
                    show_copy_button=False,
                    render_markdown=True
                )

    chat_B_rating = gr.Chatbot(
                    value=chat_B_value,
                    type="messages",
                    height=400,
                    label="Model B Response",
                    show_copy_button=False,
                    render_markdown=True
                )

    page2_prompt = gr.HTML(f'<div style="background-color: #FFEFD5; border: 2px solid #FF8C00; padding: 10px; border-radius: 5px; color: black;"><strong style="color: black;">Prompt:</strong> {prompt_text}</div>')
    
    return gr.update(visible=False), gr.update(visible=True), pairwise_list, comparison_reasons_list, "", chat_A_rating, chat_B_rating, page2_prompt, *pairwise_results_for_display


# Callback to store scores for Response A.
def store_A_scores(*args):
    # Unpack the arguments: first half are scores, second half are checkboxes.
    num = len(args) // 2
    scores = list(args[:num])
    unquals = list(args[num:])
    return scores, unquals

# Callback to transition from Page 2 to Page 3.
def go_to_page3():
    return gr.update(visible=False), gr.update(visible=True)

# Updated validation callback that ignores criteria with 'Unable to Judge'
def validate_ratings(pairwise_choices, *args):
    num_criteria = len(criteria)
    ratings_A_list = list(args[:num_criteria])
    ratings_B_list = list(args[num_criteria:])
    if any(r is None for r in ratings_A_list) or any(r is None for r in ratings_B_list):
        return "Error: Please provide ratings for both responses for every criterion.", "Error: Please provide ratings for both responses for every criterion."
    error_msgs = []
    for i, choice in enumerate(pairwise_choices):
        score_a = ratings_A_list[i]
        score_b = ratings_B_list[i]
        # Skip criteria if either rating is "Unable to Judge"
        if score_a == "Unable to Judge" or score_b == "Unable to Judge":
            continue
        # Convert string scores to integers for comparison.
        score_a = int(score_a)
        score_b = int(score_b)
        if choice == "πŸ‘ˆ Model A" and score_a < score_b:
            error_msgs.append(f"Criterion {i+1} ({criteria[i]['label']}): You selected A as better but scored A lower than B.")
        elif choice == "πŸ‘‰ Model B" and score_b < score_a:
            error_msgs.append(f"Criterion {i+1} ({criteria[i]['label']}): You selected B as better but scored B lower than A.")
        elif choice == "🀝 Tie" and score_a != score_b:
            error_msgs.append(f"Criterion {i+1} ({criteria[i]['label']}): You selected Tie but scored A and B differently.")

    if error_msgs:
        err_str = "\n".join(error_msgs)
        return err_str, err_str
    else:
        return "No errors in responses; feel free to submit!", "No errors in responses; feel free to submit!"

# # Additional callback to handle submission results.
def toggle_slider(is_unqualified):
    # When the checkbox is checked (True), set interactive to False to disable the slider.
    return gr.update(interactive=not is_unqualified)

centered_col_css = """
#centered-column {
    margin-left: auto;
    margin-right: auto;
    max-width: 800px; /* Adjust this width as desired */
    width: 100%;
}
#participate-btn {
    background-color: purple !important;
    color: white !important;
    border-color: purple !important;
}
#clear_btn {
    background-color: #F08080 !important;
    color: white !important;
    border-color: #F08080 !important;
}
"""
with gr.Blocks(css=centered_col_css) as demo:
    # States to save information between pages.
    user_info_state = gr.State()
    pairwise_state = gr.State()
    scores_A_state = gr.State()
    comparison_reasons = gr.State()
    unqualified_A_state = gr.State()
    data_subset_state = gr.State()

    # Load specialty data
    specialties_path = "specialties.json"
    subspecialties_path = "subspecialties.json"

    try:
        with open(specialties_path, 'r') as f:
            specialties_list = json.load(f)
        with open(subspecialties_path, 'r') as f:
            subspecialties_list = json.load(f)
    except FileNotFoundError:
        print(f"Error: Could not find specialty files at {specialties_path} or {subspecialties_path}. Please ensure these files exist.")
        # Provide default empty lists or handle the error as appropriate
        specialties_list = ["Error loading specialties"]
        subspecialties_list = ["Error loading subspecialties"]
    except json.JSONDecodeError:
        print(f"Error: Could not parse JSON from specialty files.")
        specialties_list = ["Error parsing specialties"]
        subspecialties_list = ["Error parsing subspecialties"]
    
    # Page -1: Page to link them to question submission form or evaluation portal
    with gr.Column(visible=True, elem_id="page-1") as page_minus1:
        gr.HTML("""
        <div>
            <h1>TxAgent Evaluation Portal</h1>
            <p>Welcome to the TxAgent Evaluation Portal.</p>
        </div>
        """)
        with gr.Row():
            participate_eval_btn = gr.Button(
            value="🌟 Participate in TxAgent Evaluation 🌟",
            variant="primary",
            size="lg",
            elem_id="participate-btn"
            )
        gr.HTML(TxAgent_Project_Page_HTML)

    # Page 0: Welcome / Informational page.
    with gr.Column(visible=False, elem_id="page0") as page0:
        gr.Markdown("## Welcome to the TxAgent Evalution Study!")
        gr.Markdown("Please read the following instructions and then enter your information to begin:")
        # Existing informational markdown...
        gr.Markdown("""
        - Each session requires a minimum commitment of 5-10 minutes to complete one question.
        - If you wish to evaluate multiple questions, you may do so; you will never be asked to re-evaluate questions you have already seen.
        - When evaluating a question, you will be asked to compare the responses of two different models to the question and then rate each model's response on a scale of 1-5.
        - You may use the Back and Next buttons at the bottom of each page to edit any of your responses before submitting.
        - You may use the Instruction Page and Home Page buttons at the bottom of each page to return to this page or the home page. Your progress will be saved but not submitted.
        - You must submit your answers to the current question before moving on to evaluate the next question.
        - You may stop in between questions and return at a later time; however, you must submit your answers to the current question if you would like them saved.

        By clicking 'Next' below, you will start the study, with your progress saved after submitting each question. If you have any other questions or concerns, please contact us directly. Thank you for your participation!
        """)
        gr.Markdown("## Please enter your information to get a question to evaluate. Please use the same email every time you log onto this evaluation portal, as we use your email to prevent showing repeat questions.")
        name = gr.Textbox(label="Name (required)")
        email = gr.Textbox(label="Email (required). Please use the same email every time you log onto this evaluation portal, as we use your email to prevent showing repeat questions.")
        evaluator_id = gr.Textbox(label="Evaluator ID (required). This is the four-digit ID you received from us for the evaluation study. If you do not have an Evaluator ID or are unsure about your Evaluator ID, please contact us.")
        specialty_dd = gr.Dropdown(choices=specialties_list, label="Primary Medical Specialty (required). Go to https://www.abms.org/member-boards/specialty-subspecialty-certificates/ for categorization)", multiselect=True)
        subspecialty_dd = gr.Dropdown(choices=subspecialties_list, label="Subspecialty (if applicable). Go to https://www.abms.org/member-boards/specialty-subspecialty-certificates/ for categorization)", multiselect=True)
        npi_id = gr.Textbox(label="National Provider Identifier ID (optional). Got to https://npiregistry.cms.hhs.gov/search to search for your NPI ID. If you do not have an NPI ID, please leave this blank.")
        years_exp_radio = gr.Radio(
            choices=["0-2 years", "3-5 years", "6-10 years", "11-20 years", "20+ years", "Not Applicable"],
            label="How many years have you been involved in clinical and/or research activities related to your biomedical area of expertise? (required)"
        )
        exp_explanation_tb = gr.Textbox(label="Please briefly explain your expertise/experience relevant to evaluating AI for clinical decision support (optional)")

        page0_error_box = gr.Markdown("")
        with gr.Row():
            next_btn_0 = gr.Button("Next")
        with gr.Row():
            home_btn_0 = gr.Button("Home (your registration info will be saved)")


    with Modal(visible=False) as eval_progress_modal:
        eval_progress_text = gr.Markdown("You have X questions remaining.")
        eval_progress_proceed_btn = gr.Button("OK, proceed to question evaluation")

    # Page 1: Pairwise Comparison.
    with gr.Column(visible=False) as page1:
        gr.Markdown("## Part 1/2: Pairwise Comparison") #Make the number controlled by question indexing!
        page1_prompt = gr.HTML()
        with gr.Row():
            # ADDED: Use gr.Chatbot to display the scrollable chat window for Response A.
            with gr.Column():
                gr.Markdown("**Model A Response:**")  # Already bold label.
                chat_a = gr.Chatbot(
                    value=[], # Placeholder for chat history
                    type="messages",
                    height=400,
                    label="Model A Response",
                    show_copy_button=False,
                    show_label=True,
                    render_markdown=True,  # Required for markdown/HTML support in messages
                    avatar_images=None,    # Optional: omit user/assistant icons
                    rtl=False
                )
            # ADDED: Use gr.Chatbot to display the scrollable chat window for Response B.
            with gr.Column():
                gr.Markdown("**Model B Response:**")
                chat_b = gr.Chatbot(
                    value=[],
                    type="messages",
                    height=400,
                    label="Model B Response",
                    show_copy_button=False,
                    show_label=True,
                    render_markdown=True,  # Required for markdown/HTML support in messages
                    avatar_images=None,    # Optional: omit user/assistant icons
                    rtl=False
                )
        gr.Markdown("<br><br>")
        gr.Markdown("### For each criterion, select which response did better:")
        comparison_reasons_inputs = []  # ADDED: list to store the free-text inputs
        pairwise_inputs = []
        for crit in criteria_for_comparison:
            with gr.Row():
                gr.Markdown(crit['text'])
                radio = gr.Radio(
                    choices=[
                        "πŸ‘ˆ Model A",  # A
                        "πŸ‘‰ Model B",  # B
                        "🀝 Tie",      # tie
                        "πŸ‘Ž Neither model did well"  # neither
                    ],
                    label="Which is better?"
                )
                pairwise_inputs.append(radio)
            # ADDED: free text under each comparison
            text_input = gr.Textbox(label=f"Reasons for your selection (optional)")
            comparison_reasons_inputs.append(text_input)
        
        page1_error_box = gr.Markdown("")  # ADDED: display validation errors
        with gr.Row():
            back_btn_0 = gr.Button("Back")
            next_btn_1 = gr.Button("Next: Rate Responses")
        
        with gr.Row():
            home_btn_1 = gr.Button("Home Page (your progress on this question will be saved but not submitted)")  # ADDED: Home button on page11
    
    # Page 2: Combined Rating Page for both responses.
    with gr.Column(visible=False) as page2:
        gr.Markdown("## Part 2/2: Rate Model Responses")
        # ### EDIT: Show a highlighted prompt as on previous pages.
        page2_prompt = gr.HTML()
        # ### EDIT: Display both responses side-by-side using Chatbot windows.
        with gr.Row():
            with gr.Column():
                gr.Markdown("**Model A Response:**")
                chat_a_rating = gr.Chatbot(
                    value=[],
                    type="messages",
                    height=400,
                    label="Model A Response",
                    show_copy_button=False,
                    render_markdown=True
                )
            with gr.Column():
                gr.Markdown("**Model B Response:**")
                chat_b_rating = gr.Chatbot(
                    value=[],
                    type="messages",
                    height=400,
                    label="Model B Response",
                    show_copy_button=False,
                    render_markdown=True
                )
        gr.Markdown("<br><br>")
        gr.Markdown("### For each criterion, select your ratings for each model response:")
        # ### EDIT: For each criterion, create a row with two multiple-choice sets (left: Response A, right: Response B) separated by a border.
        ratings_A = []  # to store the radio components for response A
        ratings_B = []  # to store the radio components for response B
        
        def restrict_choices(pairwise_list, index, score_a, score_b):
            """
            Returns (update_for_A, update_for_B).
            Enforces rating constraints based on the pairwise choice for the given criterion index.
            """
            # Get the specific pairwise choice for this criterion using the index
            # Add error handling in case the state/list is not ready or index is wrong
            if not pairwise_list or index >= len(pairwise_list):
                pairwise_choice = None
            else:
                pairwise_choice = pairwise_list[index]

            base = ["1","2","3","4","5","Unable to Judge"]
            # Default: no restrictions unless explicitly set
            upd_A = gr.update(choices=base)
            upd_B = gr.update(choices=base)

            # Skip if no meaningful pairwise choice or either score is "Unable to Judge"
            if pairwise_choice is None or pairwise_choice == "πŸ‘Ž Neither model did well" or (score_a is None and score_b is None):
                # If one score is UJ but the other isn't, AND it's a Tie, we might still want to restrict the non-UJ one later?
                # For now, keep it simple: if either is UJ or choice is Neither/None, don't restrict.
                return upd_A, upd_B

            # Helper to parse int safely
            def to_int(x):
                try: return int(x)
                except (ValueError, TypeError): return None

            a_int = to_int(score_a)
            b_int = to_int(score_b)

            # --- Apply Restrictions ---
            if pairwise_choice == "πŸ‘ˆ Model A":
                # B must be ≀ A (if A is numeric)
                if a_int is not None: #it is None if unable to judge
                    allowed_b_choices = [str(i) for i in range(1, a_int + 1)] + ["Unable to Judge"]
                    current_b = score_b if score_b in allowed_b_choices else None # Keep current valid choice
                    upd_B = gr.update(choices=allowed_b_choices, value=current_b)
                # If A is UJ or non-numeric, B is unrestricted by this rule
                # else: upd_B remains gr.update(choices=base)
                if b_int is not None:
                    # A must be >= B (if B is numeric)
                    allowed_a_choices = [str(i) for i in range(b_int, 6)] + ["Unable to Judge"]
                    current_a = score_a if score_a in allowed_a_choices else None # Keep current valid choice
                    upd_A = gr.update(choices=allowed_a_choices, value=current_a)
                # If B is UJ or non-numeric, A is unrestricted by this rule
                # else: upd_A remains gr.update(choices=base)

            elif pairwise_choice == "πŸ‘‰ Model B":
                # A must be ≀ B (if B is numeric)
                if b_int is not None:
                    allowed_a_choices = [str(i) for i in range(1, b_int + 1)] + ["Unable to Judge"]
                    current_a = score_a if score_a in allowed_a_choices else None # Keep current valid choice
                    upd_A = gr.update(choices=allowed_a_choices, value=current_a)
                # If B is UJ or non-numeric, A is unrestricted by this rule
                # else: upd_A remains gr.update(choices=base)
                if a_int is not None:
                    # B must be >= A (if A is numeric)
                    allowed_b_choices = [str(i) for i in range(a_int, 6)] + ["Unable to Judge"]
                    current_b = score_b if score_b in allowed_b_choices else None # Keep current valid choice
                    upd_B = gr.update(choices=allowed_b_choices, value=current_b)
                # If A is UJ or non-numeric, B is unrestricted by this rule
                # else: upd_B remains gr.update(choices=base)

            elif pairwise_choice == "🀝 Tie":
                # If both are numeric, they must match. Enforce based on the one that *just changed*.
                # If one changes to numeric, force the other (if also numeric) to match.
                # If one changes to UJ, the other is unrestricted.
                if a_int is not None:
                    upd_B = gr.update(choices=[score_a])
                elif score_a == "Unable to Judge":
                    upd_B = gr.update(choices=["Unable to Judge"])
                if b_int is not None:
                    upd_A = gr.update(choices=[score_b])
                elif score_b == "Unable to Judge":
                    upd_A = gr.update(choices=["Unable to Judge"])

            return upd_A, upd_B

        def clear_selection():
            return None, None
        
        pairwise_results_for_display = [gr.Markdown(render=False) for _ in range(len(criteria))]
        indices_for_change = []
        for i, crit in enumerate(criteria):
            index_component = gr.Number(value=i, visible=False, interactive=False)
            indices_for_change.append(index_component)

            with gr.Column(elem_id="centered-column"):
                gr.Markdown(f'<div style="text-align: left;">{crit["text"][0]}</div>')
                gr.Markdown(f'<div style="text-align: left;">{crit["text"][1]}</div>')
                pairwise_results_for_display[i].render()
            with gr.Row():
                with gr.Column(scale=1):
                    rating_a = gr.Radio(choices=["1", "2", "3", "4", "5", "Unable to Judge"],
                                            label=f"Score for Response A - {crit['label']}",
                                            interactive=True)
                with gr.Column(scale=1):
                    rating_b = gr.Radio(choices=["1", "2", "3", "4", "5", "Unable to Judge"],
                                            label=f"Score for Response B - {crit['label']}",
                                            interactive=True)
            with gr.Row():
                clear_btn = gr.Button("Clear Selection", size="sm",elem_id="clear_btn")
                clear_btn.click(fn=clear_selection, outputs=[rating_a,rating_b])

                # wire each to re‐restrict the other on change
                rating_a.change(
                    fn=restrict_choices,
                    inputs=[ pairwise_state, index_component, rating_a, rating_b ],
                    outputs=[ rating_a, rating_b ]
                )
                rating_b.change(
                    fn=restrict_choices,
                    inputs=[ pairwise_state, index_component, rating_a, rating_b ],
                    outputs=[ rating_a, rating_b ]
                )
                ratings_A.append(rating_a)
                ratings_B.append(rating_b)
        with gr.Row():
            back_btn_2 = gr.Button("Back")
            submit_btn = gr.Button("Submit (Note: Once submitted, you cannot edit your responses)", elem_id="submit_btn")

        with gr.Row():
            home_btn_2 = gr.Button("Home Page (your progress on this question will be saved but not submitted)")

        result_text = gr.Textbox(label="Validation Result")
    
    # Final Page: Thank you message.
    with gr.Column(visible=False, elem_id="final_page") as final_page:
        gr.Markdown("## You have no questions left to evaluate. Thank you for your participation!")
    
    # Error Modal: For displaying validation errors.
    with Modal("Error", visible=False, elem_id="error_modal") as error_modal:
        error_message_box = gr.Markdown()
        ok_btn = gr.Button("OK")
        # Clicking OK hides the modal.
        ok_btn.click(lambda: gr.update(visible=False), None, error_modal)
    
    # Confirmation Modal: Ask for final submission confirmation.
    with Modal("Confirm Submission", visible=False, elem_id="confirm_modal") as confirm_modal:
        gr.Markdown("Are you sure you want to submit? Once submitted, you cannot edit your responses.")
        with gr.Row():
            yes_btn = gr.Button("Yes, please submit")
            cancel_btn = gr.Button("Cancel")
    
    # --- Define Callback Functions for Confirmation Flow ---
    def build_row_dict(data_subset_state, user_info, pairwise, comparisons_reasons, *args):
        num_criteria = len(criteria)
        ratings_A_vals = list(args[:num_criteria])
        ratings_B_vals = list(args[num_criteria:])

        prompt_text = data_subset_state['question']
        response_A_model = data_subset_state['models'][0]['model']
        response_B_model = data_subset_state['models'][1]['model']

        timestamp = datetime.datetime.now().isoformat()
        row = {
            "Timestamp": timestamp,
            "Name": user_info[0],
            "Email": user_info[1],
            "Evaluator ID": user_info[8],
            "Specialty": str(user_info[2]),
            "Subspecialty": str(user_info[3]),
            "Years of Experience": user_info[4],
            "Experience Explanation": user_info[5],
            "NPI ID": user_info[6],
            "Question ID": user_info[7],
            "Prompt": prompt_text,
            "ResponseA_Model": response_A_model,
            "ResponseB_Model": response_B_model,
        }

        pairwise = [mapping.get(val, val) for val in pairwise]
        for i, crit in enumerate(criteria):
            label = crit['label']
            row[f"Criterion_{label} Comparison: Which is Better?"] = pairwise[i]
            row[f"Criterion_{label} Comments"] = comparisons_reasons[i]
            row[f"ScoreA_{label}"] = ratings_A_vals[i]
            row[f"ScoreB_{label}"] = ratings_B_vals[i]

        return row

    # def final_submit(data_subset_state, user_info, pairwise, comparisons_reasons, *args):

    #     row_dict = build_row_dict(data_subset_state, user_info, pairwise, comparisons_reasons, *args)
    #     append_to_sheet(user_data=None, custom_row_dict=row_dict, custom_sheet_name=str(TXAGENT_RESULTS_SHEET_BASE_NAME), add_header_when_create_sheet=True)

    #     return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)

    def final_submit(data_subset_state, user_info, pairwise, comparisons_reasons, *args):
        # --- Part 1: Submit the current results (Existing Logic) ---
        row_dict = build_row_dict(data_subset_state, user_info, pairwise, comparisons_reasons, *args)
        _, _, _, _, _, _, _, _, evaluator_id = user_info
        append_to_sheet(user_data=None, custom_row_dict=row_dict, custom_sheet_name=str(TXAGENT_RESULTS_SHEET_BASE_NAME + f"_{evaluator_id}"), add_header_when_create_sheet=True)

        # --- Part 2: Recalculate remaining questions (Existing Logic + Modified Error Handling) ---
        # try:

        # --- Re-fetch data and filter questions (Same logic as before) ---
        question_map_path = hf_hub_download(
            repo_id=REPO_ID,
            filename=QUESTION_MAP_FILENAME,
            repo_type="dataset",       # or omit if it's a Model/Space
            # force_download=True,       # ← always fetch new copy
            revision="main"            # branch/tag/commit, fetches the most recent version of the dataset each time this command is called
        )

        with open(question_map_path, 'r') as f:
            question_map = json.load(f)

        evaluator_directory = question_map.get(evaluator_id, {}).get('evaluator_name', None)
        all_files = list_repo_files(
            repo_id=REPO_ID,
            repo_type="dataset",
            revision="main",
        )

        full_question_ids_list, data_by_filename = get_evaluator_questions(evaluator_id, all_files, evaluator_directory, question_map)
        remaining_count = len(full_question_ids_list)

        # --- Part 3: Determine UI updates based on remaining count ---
        if remaining_count == 0:
            # Success with NO remaining questions
            return (
                gr.update(visible=False),  # page0 (Hide)
                gr.update(visible=False),  # page2 (Hide)
                gr.update(visible=False),  # confirm_modal
                gr.update(visible=False), 
                "",                       
                gr.update(visible=True),   # final_page (Show)
                "",
                None,
                None,
                None,
                None
            )
        
        full_question_ids_list = sorted(full_question_ids_list, key=lambda x: str(x[0])+str(x[1]))
        #selected question is the first element
        q_id, other_model_name = full_question_ids_list[0]

        #Constructing question_for_eval, the question to evaluate this round
        txagent_matched_entry = next(
            (entry for entry in data_by_filename['txagent'] if entry.get("question_ID") == q_id),
            None
        )
        other_model_matched_entry = next(
            (entry for entry in data_by_filename[other_model_name] if entry.get("question_ID") == q_id),
            None
        )

        models_list = [
            {
                "model": "txagent",
                "reasoning_trace": txagent_matched_entry.get("solution")
            },
            {
                "model": other_model_name,
                "reasoning_trace": other_model_matched_entry.get("solution")
            }
        ]
        random.shuffle(models_list)

        question_for_eval = {
            "question": txagent_matched_entry.get("question"),
            "question_ID": q_id,
            "models": models_list,
        }

        chat_A_value = format_chat(question_for_eval['models'][0]['reasoning_trace'], tool_database_labels)
        chat_B_value = format_chat(question_for_eval['models'][1]['reasoning_trace'], tool_database_labels)
        prompt_text = question_for_eval['question']

        # Construct the question-specific elements of the pairwise rating page (page 1)
        page1_prompt = gr.HTML(f'<div style="background-color: #FFEFD5; border: 2px solid #FF8C00; padding: 10px; border-radius: 5px; color: black;"><strong style="color: black;">Prompt:</strong> {prompt_text}</div>')
        chat_a = gr.Chatbot(
                value=chat_A_value,
                type="messages",
                height=400,
                label="Model A Response",
                show_copy_button=False,
                show_label=True,
                render_markdown=True,  # Required for markdown/HTML support in messages
                avatar_images=None,    # Optional: omit user/assistant icons
                rtl=False
            )
        chat_b = gr.Chatbot(
                value=chat_B_value,
                type="messages",
                height=400,
                label="Model B Response",
                show_copy_button=False,
                show_label=True,
                render_markdown=True,  # Required for markdown/HTML support in messages
                avatar_images=None,    # Optional: omit user/assistant icons
                rtl=False
            )

        # Success with remaining questions
        return (
            gr.update(visible=False),  # page0 (Hide)
            gr.update(visible=False),  # page2 (Hide)
            gr.update(visible=False),  # confirm_modal (Hide)
            gr.update(visible=True),   # eval_progress_modal (Show)
            f"Submission successful! You have {remaining_count} question(s) remaining to evaluate. You may exit the page and return later if you wish.", # eval_progress_text
            gr.update(visible=False),  # final_page (Hide)
            "",         
            chat_a,
            chat_b,
            page1_prompt,
            question_for_eval)

        # except Exception as e:
        #     error_message = f"Your submission was saved, but an error occurred while checking for remaining questions: {e}. Please try starting the process again by entering your details. If the problem persists, contact the administrator."
        #     print(f"Error during recalculation in final_submit: {e}") # Keep logging for debugging
        #     # *** MODIFIED RETURN ***: Error during recalculation
        #     return (
        #         gr.update(visible=True),   # page0 (Show) - Send user back to start
        #         gr.update(visible=False),  # page2 (Hide)
        #         gr.update(visible=False),  # confirm_modal (Hide)
        #         gr.update(visible=False),  # eval_progress_modal (Hide)
        #         "",                        # eval_progress_text (Clear)
        #         gr.update(visible=False),  # final_page (Hide)
        #         error_message              # page0_error_box (Update with error)
        #     )
    
    def cancel_submission():
        # Cancel final submission: just hide the confirmation modal.
        return gr.update(visible=False)
    
    def reset_everything_except_user_info():

        # 3) Reset all pairwise radios & textboxes
        reset_pairwise_radios = [gr.update(value=None) for i in range(len(criteria))]
        reset_pairwise_reasoning_texts  = [gr.update(value=None) for i in range(len(criteria))]

        # 4) Reset all rating radios
        reset_ratings_A = [gr.update(value=None) for i in range(len(criteria))]
        reset_ratings_B = [gr.update(value=None) for i in range(len(criteria))]

        return (

            # states
            # gr.update(value=None),  # user_info_state
            gr.update(value=None),  # pairwise_state
            gr.update(value=None),  # scores_A_state
            gr.update(value=None),  # comparison_reasons
            gr.update(value=None),  # unqualified_A_state
            # gr.update(value=None),  # data_subset_state

            #page0 elements that need to be reset
            gr.update(value=""),  #page0_error_box 

            # page1 elements that need to be reset
            # gr.update(value=""),  #page1_prompt
            # gr.update(value=[]),  #chat_a
            # gr.update(value=[]),  #chat_b
            gr.update(value=""),  #page1_error_box

            # page2 elements that need to be reset
            gr.update(value=""),  #page2_prompt
            gr.update(value=[]),  #chat_a_rating
            gr.update(value=[]),  #chat_b_rating
            gr.update(value=""),  #result_text

            #lists of gradio elements that need to be unrolled
            *reset_pairwise_radios,
            *reset_pairwise_reasoning_texts,
            *reset_ratings_A,
            *reset_ratings_B
        )
    
    # --- Define Transitions Between Pages ---


    # For the "Participate in Evaluation" button, transition to page0
    participate_eval_btn.click(
        fn=go_to_page0_from_minus1,
        inputs=None,
        outputs=[page_minus1, page0]
    )


    # Transition from Page 0 (Welcome) to Page 1.
    next_btn_0.click(
        fn=go_to_eval_progress_modal,
        inputs=[name, email, evaluator_id, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id],
        outputs=[page0, page1, user_info_state, page0_error_box, chat_a, chat_b, page1_prompt, data_subset_state,eval_progress_modal,eval_progress_text],
        scroll_to_output=True
    )

    eval_progress_proceed_btn.click(
        fn=go_to_page1,
        inputs=None,
        outputs=[eval_progress_modal, page0, page1],
        scroll_to_output=True
    )

    #Home page buttons to simply shown page-1
    home_btn_0.click(lambda: (gr.update(visible=True), gr.update(visible=False)), None, [page_minus1, page0])
    home_btn_1.click(lambda: (gr.update(visible=True), gr.update(visible=False)), None, [page_minus1, page1])
    home_btn_2.click(lambda: (gr.update(visible=True), gr.update(visible=False)), None, [page_minus1, page2])
    
    # Transition from Page 1 to Page 0 (Back button).
    back_btn_0.click(
        fn=lambda: (gr.update(visible=True), gr.update(visible=False)),
        inputs=None,
        outputs=[page0, page1]
    )
    
    # Transition from Page 1 (Pairwise) to the combined Rating Page (Page 2).
    next_btn_1.click(
        fn=go_to_page2,  # ### EDIT: Rename or update the function to simply pass the pairwise inputs if needed.
        inputs=[data_subset_state,*pairwise_inputs,*comparison_reasons_inputs],
        outputs=[page1, page2, pairwise_state, comparison_reasons, page1_error_box, chat_a_rating, chat_b_rating, page2_prompt, *pairwise_results_for_display],
        scroll_to_output=True
    )
    
    # Transition from Rating Page (Page 2) back to Pairwise page.
    back_btn_2.click(
        fn=lambda: (gr.update(visible=True), gr.update(visible=False)),
        inputs=None,
        outputs=[page1, page2],
        scroll_to_output=True
    )
    
    # --- Submission: Validate the Ratings and then Process the Result ---
    def process_result(result):
        # If validation passed, show the confirmation modal and proceed.
        if result == "No errors in responses; feel free to submit!":
            return (
                gr.update(),  # Show page 3
                gr.update(),  # Hide final page
                gr.update(visible=True),  # Show confirmation modal
                gr.update(visible=False),  # Hide error modal
                gr.update(value="")  # EDIT: Clear the error_message_box
            )
        else:
            # If validation fails, show the error modal and display the error in error_message_box.
            return (
                gr.update(),             # Keep page3 as is
                gr.update(),             # Keep final page unchanged
                gr.update(visible=False), # Hide confirmation modal
                gr.update(visible=True),  # Show error modal
                gr.update(value=result)   # EDIT: Update error_message_box with the validation error
            )

    # ### EDIT: Update the submission callback to use the new radio inputs.
    submit_btn.click(
        fn=validate_ratings,
        inputs=[pairwise_state, *ratings_A, *ratings_B],
        outputs=[error_message_box, result_text]
    ).then(
        fn=process_result,
        inputs=error_message_box,
        outputs=[page2, final_page, confirm_modal, error_modal, error_message_box],
        scroll_to_output=True
    )
    
    # Finalize submission if user confirms.
    # yes_btn.click(
    #     fn=final_submit,
    #     inputs=[data_subset_state, user_info_state, pairwise_state, comparison_reasons, *ratings_A, *ratings_B],
    #     outputs=[page2, final_page, confirm_modal]
    # )
    question_submission_event = yes_btn.click(
        fn=final_submit,
        inputs=[data_subset_state, user_info_state, pairwise_state, comparison_reasons, *ratings_A, *ratings_B],
        outputs=[
            page0,                 # Controlled by final_submit return value 1
            page2,                 # Controlled by final_submit return value 2
            confirm_modal,         # Controlled by final_submit return value 3
            eval_progress_modal,   # Controlled by final_submit return value 4
            eval_progress_text,    # Controlled by final_submit return value 5
            final_page,            # Controlled by final_submit return value 6
            page0_error_box,
            chat_a,
            chat_b,
            page1_prompt,
            data_subset_state
        ],
        scroll_to_output=True
    )
    
    # Cancel final submission.
    cancel_btn.click(
        fn=cancel_submission,
        inputs=None,
        outputs=confirm_modal
    )

    # Reset everything and evaluate another question button
    question_submission_event.then(
        fn=reset_everything_except_user_info,
        inputs=[],
        outputs=[

            # states
            # user_info_state,
            pairwise_state,
            scores_A_state,
            comparison_reasons,
            unqualified_A_state,
            # data_subset_state,

            #page0 elements that need to be reset
            page0_error_box,

            # # page1 elements that need to be reset
            # page1_prompt,
            # chat_a,
            # chat_b,
            page1_error_box,

            # page2 elements that need to be reset
            page2_prompt,
            chat_a_rating,
            chat_b_rating,
            result_text,

            #lists of gradio elements that need to be unrolled
            *pairwise_inputs,
            *comparison_reasons_inputs,
            *ratings_A,
            *ratings_B
        ]
    )

demo.launch(share=True, allowed_paths = ["."])