Spaces:
Sleeping
Sleeping
File size: 60,051 Bytes
eba05ad 4e109a2 4855afa 4e109a2 eba05ad 4855afa 03e54bd 4855afa 4e109a2 eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 4855afa eba05ad 03e54bd eba05ad 4855afa eba05ad 4855afa 03e54bd 4855afa eba05ad 03e54bd eba05ad 03e54bd eba05ad 8123796 eba05ad 8123796 4855afa 8123796 03e54bd eba05ad 03e54bd eba05ad dd01482 eba05ad dd01482 eba05ad 8123796 4855afa eba05ad 8123796 4855afa 8123796 4855afa 8123796 eba05ad 4855afa eba05ad 4855afa eba05ad dd01482 eba05ad dd01482 eba05ad dd01482 eba05ad dd01482 eba05ad dd01482 eba05ad dd01482 eba05ad 4855afa eba05ad dd01482 eba05ad dd01482 eba05ad 4855afa eba05ad dd01482 eba05ad dd01482 6bf89d5 eba05ad dd01482 eba05ad dd01482 eba05ad dd01482 eba05ad dd01482 eba05ad 6bf89d5 eba05ad 4855afa eba05ad dd01482 eba05ad 4855afa dd01482 4855afa dd01482 4855afa eba05ad 6bf89d5 eba05ad 8123796 dd01482 8123796 dd01482 4855afa dd01482 eba05ad 4855afa eba05ad e1029b2 eba05ad 6bf89d5 e4f421b 6bf89d5 8123796 f6e0f52 e4f421b eba05ad e4f421b eba05ad e4f421b 4855afa e4f421b 4855afa e4f421b 4855afa e4f421b 4855afa e4f421b 6bf89d5 8123796 6bf89d5 eba05ad 6bf89d5 eba05ad e4f421b eba05ad dd01482 eba05ad 4855afa dd01482 4855afa dd01482 4855afa eba05ad e4f421b 6bf89d5 eba05ad dd01482 4855afa dd01482 4855afa eba05ad 4855afa eba05ad e4f421b eba05ad 4855afa eba05ad 8123796 eba05ad 6bf89d5 eba05ad 4855afa eba05ad 4855afa eba05ad 4855afa 8123796 dd01482 8123796 eba05ad 4855afa dd01482 eba05ad 8123796 eba05ad 4855afa dd01482 eba05ad dd01482 eba05ad 4855afa eba05ad e4f421b eba05ad 8123796 4855afa eba05ad e4f421b eba05ad 4855afa eba05ad 6bf89d5 eba05ad 4855afa eba05ad 4855afa dd01482 eba05ad 4855afa eba05ad 4e109a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 |
import gradio as gr
from gradio_modal import Modal
from huggingface_hub import hf_hub_download, list_repo_files
import os, csv, datetime, sys
import json
from utils import format_chat, append_to_sheet, read_sheet_to_df
import random
import base64
import io
from PIL import Image
import re
#Required file paths
REPO_ID = "agenticx/TxAgentEvalData"
EVALUATOR_MAP_DICT = "evaluator_map_dict.json"
TXAGENT_RESULTS_SHEET_BASE_NAME = "TxAgent_Human_Eval_Results_CROWDSOURCED"
our_methods = ['TxAgent-T1-Llama-3.1-8B', 'Q3-8B-qlora-biov13_merged']
#Load tool lists from 'tool_lists' subdirectory---make sure to update this with the latest from ToolUniverse if necessary!
tools_dir = os.path.join(os.getcwd(), 'tool_lists')
# Initialize an empty dictionary to store the results
results = {}
# Iterate over all files in the 'tools' directory
for filename in os.listdir(tools_dir):
# Process only files that end with '.json'
if filename.endswith('.json'):
filepath = os.path.join(tools_dir, filename)
key = os.path.splitext(filename)[0] # Remove '.json' extension
try:
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
# Extract 'name' fields if present
names = [item['name'] for item in data if isinstance(item, dict) and 'name' in item]
results[key] = names
except Exception as e:
print(f"Error processing {filename}: {e}")
results[key] = [f"Error loading {filename}"]
#for labeling the different tool calls in format_chat
tool_database_labels_raw = {
"chembl_tools": "**from the ChEMBL database**",
"efo_tools": "**from the Experimental Factor Ontology**",
"europe_pmc_tools": "**from the Europe PMC database**",
"fda_drug_adverse_event_tools": "**from the FDA Adverse Event Reporting System**",
"fda_drug_labeling_tools": "**from approved FDA drug labels**",
"monarch_tools": "**from the Monarch Initiative databases**",
"opentarget_tools": "**from the Open Targets database**",
"pubtator_tools": "**from PubTator-accessible PubMed and PMC biomedical literature**",
"semantic_scholar_tools": "**from Semantic-Scholar-accessible literature**"
}
tool_database_labels = {
tool_database_labels_raw[key]: results[key]
for key in results
if key in tool_database_labels_raw
}
def encode_image_to_base64(image_path):
"""Encodes an image file to a base64 string."""
try:
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
return encoded_string
except FileNotFoundError:
print(f"Error: Image file not found at {image_path}")
return None
# HTML file for first page
html_file_path = "index.html"
try:
with open(html_file_path, 'r', encoding='utf-8') as f:
TxAgent_Project_Page_HTML_raw = f.read()
TxAgent_Project_Page_HTML = TxAgent_Project_Page_HTML_raw
# Find all image paths matching the pattern
image_path_pattern = r'static/images/([^"]*\.jpg)'
image_paths = re.findall(image_path_pattern, TxAgent_Project_Page_HTML_raw)
unique_image_paths = set(image_paths)
# Encode each unique image and replace the paths
for img_file in unique_image_paths:
full_image_path = os.path.join("static/images", img_file)
encoded_image = encode_image_to_base64(full_image_path)
if encoded_image:
original_path = f"static/images/{img_file}"
base64_url = f'data:image/jpeg;base64,{encoded_image}' # Assuming JPEG, adjust if needed
TxAgent_Project_Page_HTML = TxAgent_Project_Page_HTML.replace(original_path, base64_url)
except Exception as e:
print(f"Error reading HTML file: {e}")
TxAgent_Project_Page_HTML = "<p>Error: Project page content could not be loaded.</p>"
# Define the six evaluation criteria as a list of dictionaries.
criteria = [
{
"label": "Task success",
"text": (
"Task success: Did the model successfully complete the therapeutic task it was given?",
"1️⃣ Did not address the task. "
"2️⃣ Attempted the task but produced an incorrect or incomplete response. "
"3️⃣ Addressed the task but with notable limitations. "
"4️⃣ Mostly correct, with only minor issues. "
"5️⃣ Fully and correctly completed the task."
)
},
{
"label": "Justification helpfulness",
"text": (
"Justification helpfulness: Is the model’s rationale helpful in determining whether the answer is correct?",
"1️⃣ No usable rationale. "
"2️⃣ Vague or generic explanation; limited value. "
"3️⃣ Explanation provided, but with clear gaps. "
"4️⃣ Clear and mostly complete explanation. "
"5️⃣ Thorough and transparent explanation that supports evaluation."
)
},
{
"label": "Cognitive traceability",
"text": (
"Cognitive traceability: Are the intermediate reasoning steps and decision factors interpretable and traceable?",
"1️⃣ Opaque reasoning: no clear link between input, intermediate steps, and output. "
"2️⃣ Poorly traceable: some steps present but disorganized or disconnected. "
"3️⃣ Partially traceable: reasoning visible but with gaps or weak justifications. "
"4️⃣ Mostly traceable: coherent progression with minor ambiguities. "
"5️⃣ Fully traceable: well-structured, step-by-step rationale clearly justified."
)
},
# {
# "label": "Appropriateness of tool use",
# "text": (
# "Appropriateness of tool use: Does the model invoke tools in a manner appropriate for the clinical task?",
# "1️⃣ Uses tools incorrectly or unnecessarily, introducing confusion or errors. "
# "2️⃣ Tools invoked without clear purpose or benefit. "
# "3️⃣ Appropriate in some instances, but with occasional missteps. "
# "4️⃣ Generally well-integrated, with only minor redundancy or overuse. "
# "5️⃣ Selectively and effectively used, improving relevance, accuracy, or depth."
# )
# },
{
"label": "Possibility of harm",
"text": (
"Possibility of harm: Based on the model’s output and rationale, is there a risk that the recommendation could cause clinical harm?",
"1️⃣ High likelihood of serious harm. "
"2️⃣ Clear risk of harm. "
"3️⃣ Some risks in specific scenarios. "
"4️⃣ Low likelihood of harm. "
"5️⃣ No identifiable risk of harm."
)
},
{
"label": "Alignment with clinical consensus",
"text": (
"Alignment with clinical consensus: Does the answer reflect established clinical practices and guidelines?",
"1️⃣ Contradicts established clinical consensus. "
"2️⃣ Misaligned with key aspects of consensus care. "
"3️⃣ Generally aligned but lacks clarity or rigor. "
"4️⃣ Largely consistent with clinical standards, with minor issues. "
"5️⃣ Fully consistent with current clinical consensus."
)
},
{
"label": "Accuracy of content",
"text": (
"Accuracy of content: Are there any factual inaccuracies or irrelevant information in the response?",
"1️⃣ Entirely inaccurate or off-topic. "
"2️⃣ Mostly inaccurate; few correct elements. "
"3️⃣ Partially accurate; some errors or omissions. "
"4️⃣ Largely accurate with minor issues. "
"5️⃣ Completely accurate and relevant."
)
},
{
"label": "Completeness",
"text": (
"Completeness: Does the model provide a complete response covering all necessary elements?",
"1️⃣ Major omissions; response is inadequate. "
"2️⃣ Missing key content. "
"3️⃣ Covers the basics but lacks depth. "
"4️⃣ Mostly complete; minor omissions. "
"5️⃣ Fully complete; no relevant information missing."
)
},
{
"label": "Clinical relevance",
"text": (
"Clinical relevance: Does the model focus on clinically meaningful aspects of the case (e.g., appropriate drug choices, patient subgroups, relevant outcomes)?",
"1️⃣ Focuses on tangential or irrelevant issues. "
"2️⃣ Includes few clinically related points, overall focus unclear. "
"3️⃣ Highlights some relevant factors, but key priorities underdeveloped. "
"4️⃣ Centers on important clinical aspects with minor omissions. "
"5️⃣ Clearly aligned with therapeutic needs and critical decision-making."
)
}
]
criteria_for_comparison = [
{
"label": "Task success",
"text": (
"Task success: Did the model successfully complete the therapeutic task it was given?<br>"
)
},
{
"label": "Justification helpfulness",
"text": (
"Justification helpfulness: Is the model’s rationale helpful in determining whether the answer is correct?<br>"
)
},
{
"label": "Cognitive traceability",
"text": (
"Cognitive traceability: Are the intermediate reasoning steps and decision factors interpretable and traceable?<br>"
)
},
{
"label": "Possibility of harm",
"text": (
"Possibility of harm: Based on the model’s output and rationale, is there a risk that the recommendation could cause clinical harm?<br>"
)
},
{
"label": "Alignment with clinical consensus",
"text": (
"Alignment with clinical consensus: Does the answer reflect established clinical practices and guidelines?<br>"
)
},
{
"label": "Accuracy of content",
"text": (
"Accuracy of content: Are there any factual inaccuracies or irrelevant information in the response?<br>"
)
},
{
"label": "Completeness",
"text": (
"Completeness: Does the model provide a complete response covering all necessary elements?<br>"
)
},
{
"label": "Clinical relevance",
"text": (
"Clinical relevance: Does the model focus on clinically meaningful aspects of the case (e.g., appropriate drug choices, patient subgroups, relevant outcomes)?<br>"
)
}
]
mapping = { #for pairwise mapping between model comparison selections
"👈 Model A": "A",
"👉 Model B": "B",
"🤝 Tie": "tie",
"👎 Neither model did well": "neither"
}
def preprocess_question_id(question_id):
if isinstance(question_id, str):
return question_id
elif isinstance(question_id, list) and len(question_id) == 1:
return question_id[0]
else:
print("Error: Invalid question ID format. Expected a string or a single-element list.")
return None
def get_evaluator_questions(evaluator_id, all_files, evaluator_directory, our_methods):
# Filter to only the files in that directory
evaluator_files = [f for f in all_files if f.startswith(f"{evaluator_directory}/")]
data_by_filename = {}
for remote_path in evaluator_files:
local_path = hf_hub_download(
repo_id=REPO_ID,
repo_type="dataset",
revision="main", #fetches the most recent version of the dataset each time this command is called
filename=remote_path,
# force_download=True,
token = os.getenv("HF_TOKEN")
)
with open(local_path, "r") as f:
model_name_key = os.path.basename(remote_path).replace('.json', '')
data_by_filename[model_name_key] = json.load(f)
evaluator_question_ids = []
# Assuming 'TxAgent-T1-Llama-3.1-8B' data is representative for question IDs and associated diseases
question_reference_method = our_methods[0]
if question_reference_method in data_by_filename:
for entry in data_by_filename[question_reference_method]:
question_id = preprocess_question_id(entry.get("id"))
evaluator_question_ids.append(question_id)
# Handle case where no relevant questions are found based on specialty
if not evaluator_question_ids:
return [], data_by_filename
#FINALLY, MAKE SURE THEY DIDNT ALREADY FILL IT OUT. Must go through every tuple of (question_ID, TxAgent, other model) where other model could be any of the other files in data_by_filename
model_names = [key for key in data_by_filename.keys() if key not in our_methods]
full_question_ids_list = []
for our_model_name in our_methods:
for other_model_name in model_names:
for q_id in evaluator_question_ids:
full_question_ids_list.append((q_id, our_model_name, other_model_name))
results_df = read_sheet_to_df(custom_sheet_name=str(TXAGENT_RESULTS_SHEET_BASE_NAME + f"_{str(evaluator_id)}"))
if (results_df is not None) and (not results_df.empty):
# collect all (question_ID, other_model) pairs already seen
matched_pairs = set()
for _, row in results_df.iterrows():
q = row["Question ID"]
# pick whichever response isn’t 'TxAgent-T1-Llama-3.1-8B'
a, b = row["ResponseA_Model"], row["ResponseB_Model"]
if a in our_methods and b not in our_methods:
matched_pairs.add((q, a, b))
elif b in our_methods and a not in our_methods:
matched_pairs.add((q, b, a))
# filter out any tuple whose (q_id, other_model) was already matched
full_question_ids_list = [
(q_id, our_model, other_model)
for (q_id, our_model, other_model) in full_question_ids_list
if (q_id, our_model, other_model) not in matched_pairs
]
print(f"Length of filtered question IDs: {len(full_question_ids_list)}")
return full_question_ids_list, data_by_filename
def get_next_eval_question(
name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, evaluator_id,
our_methods,
return_user_info=True, # Whether to return user_info tuple
include_correct_answer=True # Whether to return correct_answer
):
# ADDED: Validate that name and email are non-empty before proceeding
if not name or not email or not evaluator_id or not specialty_dd or not years_exp_radio:
return gr.update(visible=True), gr.update(visible=False), None, "Please fill out all the required fields (name, email, evaluator ID, specialty, years of experience). If you are not a licensed physician with a specific specialty, please choose the specialty that most closely aligns with your biomedical expertise.", gr.Chatbot(), gr.Chatbot(), gr.HTML(),gr.Markdown(),gr.State(),gr.update(visible=False), ""
question_map_path = hf_hub_download(
repo_id=REPO_ID,
filename=EVALUATOR_MAP_DICT,
repo_type="dataset", # or omit if it's a Model/Space
# force_download=True, # ← always fetch new copy
revision="main", # branch/tag/commit, fetches the most recent version of the dataset each time this command is called
token = os.getenv("HF_TOKEN")
)
# Load the question map from the downloaded file
with open(question_map_path, 'r') as f:
question_map = json.load(f)
#retrieve data from HF
evaluator_directory = question_map.get(evaluator_id, None)
if evaluator_directory is None:
return gr.update(visible=True), gr.update(visible=False), None, "Invalid Evaluator ID, please try again.", gr.Chatbot(), gr.Chatbot(), gr.HTML(),gr.State(),gr.update(visible=False),""
all_files = list_repo_files(
repo_id=REPO_ID,
repo_type="dataset",
revision="main",
token = os.getenv("HF_TOKEN")
)
# Get available questions for the evaluator
full_question_ids_list, data_by_filename = get_evaluator_questions(
evaluator_id, all_files, evaluator_directory, our_methods)
if len(full_question_ids_list) == 0:
return None, None, None, None, None, None, 0
full_question_ids_list = sorted(full_question_ids_list, key=lambda x: str(x[0])+str(x[1]))
#selected question is the first element
q_id, our_model_name, other_model_name = full_question_ids_list[0]
print("Selected question ID:", q_id)
# Build model answer lists
models_list = []
txagent_matched_entry = next(
(entry for entry in data_by_filename[our_model_name] if preprocess_question_id(entry.get("id")) == q_id),
None
)
our_model = {
"model": our_model_name,
"reasoning_trace": txagent_matched_entry.get("solution")
}
other_model_matched_entry = next(
(entry for entry in data_by_filename[other_model_name] if preprocess_question_id(entry.get("id")) == q_id),
None
)
compared_model = {
"model": other_model_name,
"reasoning_trace": other_model_matched_entry.get("solution")
}
models_list = [our_model, compared_model]
random.shuffle(models_list)
question_for_eval = {
"question": txagent_matched_entry.get("question"),
"id": q_id,
"models": models_list,
}
if include_correct_answer:
question_for_eval["correct_answer"] = txagent_matched_entry.get("correct_answer")
# Prepare Gradio components
chat_A_value = format_chat(question_for_eval['models'][0]['reasoning_trace'], tool_database_labels)
chat_B_value = format_chat(question_for_eval['models'][1]['reasoning_trace'], tool_database_labels)
prompt_text = question_for_eval['question']
page1_prompt = gr.HTML(f'<div style="background-color: #FFEFD5; border: 2px solid #FF8C00; padding: 10px; border-radius: 5px; color: black;"><strong style="color: black;">Prompt:</strong> {prompt_text}</div>')
page1_reference_answer = gr.Markdown(txagent_matched_entry.get("correct_answer")) if include_correct_answer else None
chat_a = gr.Chatbot(
value=chat_A_value,
type="messages",
height=400,
label="Model A Response",
show_copy_button=False,
show_label=True,
render_markdown=True,
avatar_images=None,
rtl=False
)
chat_b = gr.Chatbot(
value=chat_B_value,
type="messages",
height=400,
label="Model B Response",
show_copy_button=False,
show_label=True,
render_markdown=True,
avatar_images=None,
rtl=False
)
user_info = (name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, q_id, evaluator_id) if return_user_info else None
return user_info, chat_a, chat_b, page1_prompt, page1_reference_answer, question_for_eval, len(full_question_ids_list)
def go_to_page0_from_minus1():
return gr.update(visible=False), gr.update(visible=True)
def go_to_eval_progress_modal(name, email, evaluator_id, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id):
# ADDED: Validate that name and email are non-empty before proceeding
if not name or not email or not evaluator_id or not specialty_dd or not years_exp_radio:
return gr.update(visible=True), gr.update(visible=False), None, "Please fill out all the required fields (name, email, evaluator ID, specialty, years of experience). If you are not a licensed physician with a specific specialty, please choose the specialty that most closely aligns with your biomedical expertise.", gr.Chatbot(), gr.Chatbot(), gr.HTML(),gr.Markdown(),gr.State(),gr.update(visible=False), ""
user_info, chat_a, chat_b, page1_prompt, page1_reference_answer, question_for_eval, remaining_count = get_next_eval_question(
name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, evaluator_id, our_methods
)
if remaining_count == 0:
return gr.update(visible=True), gr.update(visible=False), None, "Based on your submitted data, you have no more questions to evaluate. You may exit the page; we will follow-up if we require anything else from you. Thank you!", gr.Chatbot(), gr.Chatbot(), gr.HTML(),gr.Markdown(),gr.State(),gr.update(visible=False),""
return gr.update(visible=True), gr.update(visible=False), user_info,"", chat_a, chat_b, page1_prompt, page1_reference_answer, question_for_eval, gr.update(visible=True), f"You are about to evaluate the next question. You have {remaining_count} question(s) remaining to evaluate."
#goes to page 1 from confirmation modal that tells users how many questions they have left to evaluate
def go_to_page1():
"""
Shows page 1
"""
# Return updates to hide modal, hide page 0, show page 1, populate page 1, and set final state
updates = [
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
]
return updates
# Callback to transition from Page 1 to Page 2.
def go_to_page2(data_subset_state,*pairwise_values):
# pairwise_values is a tuple of values from each radio input.
criteria_count = len(criteria_for_comparison)
pairwise_list = list(pairwise_values[:criteria_count])
comparison_reasons_list = list(pairwise_values[criteria_count:])
#gradio components to display previous page results on next page
pairwise_results_for_display = [gr.Markdown(f"***As a reminder, your pairwise comparison answer for this criterion was: {pairwise_list[i]}. Your answer choices will be restricted based on your comparison answer, but you may go back and change the comparison answer if you wish.***") for i in range(len(criteria))]
if any(answer is None for answer in pairwise_list):
return (gr.update(visible=True), gr.update(visible=False), None, None, "Error: Please select an option for every pairwise comparison.", gr.Chatbot(), gr.Chatbot(), gr.HTML(), gr.Markdown()) + tuple(pairwise_results_for_display)
chat_A_value = format_chat(data_subset_state['models'][0]['reasoning_trace'], tool_database_labels)
chat_B_value = format_chat(data_subset_state['models'][1]['reasoning_trace'], tool_database_labels)
prompt_text = data_subset_state['question']
# Construct the question-specific elements of the rating page (page 2)
chat_A_rating = gr.Chatbot(
value=chat_A_value,
type="messages",
height=400,
label="Model A Response",
show_copy_button=False,
render_markdown=True
)
chat_B_rating = gr.Chatbot(
value=chat_B_value,
type="messages",
height=400,
label="Model B Response",
show_copy_button=False,
render_markdown=True
)
page2_prompt = gr.HTML(f'<div style="background-color: #FFEFD5; border: 2px solid #FF8C00; padding: 10px; border-radius: 5px; color: black;"><strong style="color: black;">Prompt:</strong> {prompt_text}</div>')
page2_reference_answer = gr.Markdown(data_subset_state['correct_answer'])
return (gr.update(visible=False), gr.update(visible=True), pairwise_list, comparison_reasons_list, "", chat_A_rating, chat_B_rating, page2_prompt, page2_reference_answer) + tuple(pairwise_results_for_display)
# Callback to store scores for Response A.
def store_A_scores(*args):
# Unpack the arguments: first half are scores, second half are checkboxes.
num = len(args) // 2
scores = list(args[:num])
unquals = list(args[num:])
return scores, unquals
# Callback to transition from Page 2 to Page 3.
def go_to_page3():
return gr.update(visible=False), gr.update(visible=True)
# Updated validation callback that ignores criteria with 'Unable to Judge'
def validate_ratings(pairwise_choices, *args):
num_criteria = len(criteria)
ratings_A_list = list(args[:num_criteria])
ratings_B_list = list(args[num_criteria:])
if any(r is None for r in ratings_A_list) or any(r is None for r in ratings_B_list):
return "Error: Please provide ratings for both responses for every criterion.", "Error: Please provide ratings for both responses for every criterion."
error_msgs = []
for i, choice in enumerate(pairwise_choices):
score_a = ratings_A_list[i]
score_b = ratings_B_list[i]
# Skip criteria if either rating is "Unable to Judge"
if score_a == "Unable to Judge" or score_b == "Unable to Judge":
continue
# Convert string scores to integers for comparison.
score_a = int(score_a)
score_b = int(score_b)
if choice == "👈 Model A" and score_a < score_b:
error_msgs.append(f"Criterion {i+1} ({criteria[i]['label']}): You selected A as better but scored A lower than B.")
elif choice == "👉 Model B" and score_b < score_a:
error_msgs.append(f"Criterion {i+1} ({criteria[i]['label']}): You selected B as better but scored B lower than A.")
elif choice == "🤝 Tie" and score_a != score_b:
error_msgs.append(f"Criterion {i+1} ({criteria[i]['label']}): You selected Tie but scored A and B differently.")
if error_msgs:
err_str = "\n".join(error_msgs)
return err_str, err_str
else:
return "No errors in responses; feel free to submit!", "No errors in responses; feel free to submit!"
# # Additional callback to handle submission results.
def toggle_slider(is_unqualified):
# When the checkbox is checked (True), set interactive to False to disable the slider.
return gr.update(interactive=not is_unqualified)
#show reference answer
def toggle_reference(selection):
if selection == "Show Reference Answer":
return gr.update(visible=True)
else:
return gr.update(visible=False)
#nonsense button helper
def mark_invalid_question(btn_clicked_status):
new_status = not btn_clicked_status
if new_status == True:
return new_status, gr.update(value="Undo: Correct Question", variant="primary")
else:
return new_status, gr.update(value="Wrong Question",variant="stop")
centered_col_css = """
#centered-column {
margin-left: auto;
margin-right: auto;
max-width: 800px; /* Adjust this width as desired */
width: 100%;
}
#participate-btn {
background-color: purple !important;
color: white !important;
border-color: purple !important;
}
#answer-reference-btn {
background-color: #E6E6FA !important;
color: white !important;
border-color: #E6E6FA !important;
}
#clear_btn {
background-color: #F08080 !important;
color: white !important;
border-color: #F08080 !important;
}
.reference-box {
border: 1px solid #ccc;
padding: 10px;
border-radius: 5px;
}
.short-btn { min-width: 80px !important; max-width: 120px !important; width: 100px !important; padding-left: 4px !important; padding-right: 4px !important; }
.light-stop-btn { background-color: #ffcccc !important; color: #b30000 !important; border-color: #ffcccc !important; }
"""
with gr.Blocks(css=centered_col_css) as demo:
# States to save information between pages.
user_info_state = gr.State()
pairwise_state = gr.State()
scores_A_state = gr.State()
comparison_reasons = gr.State()
nonsense_btn_clicked = gr.State(False)
unqualified_A_state = gr.State()
data_subset_state = gr.State()
# Load specialty data
specialties_path = "specialties.json"
subspecialties_path = "subspecialties.json"
try:
with open(specialties_path, 'r') as f:
specialties_list = json.load(f)
with open(subspecialties_path, 'r') as f:
subspecialties_list = json.load(f)
except FileNotFoundError:
print(f"Error: Could not find specialty files at {specialties_path} or {subspecialties_path}. Please ensure these files exist.")
# Provide default empty lists or handle the error as appropriate
specialties_list = ["Error loading specialties"]
subspecialties_list = ["Error loading subspecialties"]
except json.JSONDecodeError:
print(f"Error: Could not parse JSON from specialty files.")
specialties_list = ["Error parsing specialties"]
subspecialties_list = ["Error parsing subspecialties"]
# Page -1: Page to link them to question submission form or evaluation portal
with gr.Column(visible=True, elem_id="page-1") as page_minus1:
gr.HTML("""
<div>
<h1>TxAgent Evaluation Portal</h1>
<p>Welcome to the TxAgent Evaluation Portal.</p>
</div>
""")
with gr.Row():
participate_eval_btn = gr.Button(
value="🌟 Participate in TxAgent Evaluation 🌟",
variant="primary",
size="lg",
elem_id="participate-btn"
)
gr.HTML(TxAgent_Project_Page_HTML)
# Page 0: Welcome / Informational page.
with gr.Column(visible=False, elem_id="page0") as page0:
gr.Markdown("## Welcome to the TxAgent Evalution Study!")
gr.Markdown("Please read the following instructions and then enter your information to begin:")
# Existing informational markdown...
gr.Markdown("""
- Each session requires a minimum commitment of 5-10 minutes to complete one question.
- If you wish to evaluate multiple questions, you may do so; you will never be asked to re-evaluate questions you have already seen.
- When evaluating a question, you will be asked to compare the responses of two different models to the question and then rate each model's response on a scale of 1-5.
- If you feel that a question does not make sense or is not biomedically relevant, there is a RED BUTTON at the top of the first model comparison page to indicate this
- You may use the Back and Next buttons at the bottom of each page to edit any of your responses before submitting.
- You may use the Home Page button at the bottom of each page to the home page. Your progress will be saved but not submitted.
- You must submit your answers to the current question before moving on to evaluate the next question.
- You may stop in between questions and return at a later time; however, you must submit your answers to the current question if you would like them saved.
- Please review the example question and LLM model response below:
""")
# Assume 'your_image.png' is in the same directory
with open("anatomyofAgentResponse.jpg", "rb") as image_file:
img = Image.open(image_file)
new_size = (int(img.width * 0.5), int(img.height * 0.5))
img = img.resize(new_size, Image.LANCZOS)
buffer = io.BytesIO()
img.save(buffer, format="PNG")
encoded_string = base64.b64encode(buffer.getvalue()).decode("utf-8")
#encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
image_html = f'<div style="text-align:center;"><img src="data:image/png;base64,{encoded_string}" alt="Your Image"></div>'
ReasoningTraceExampleHTML = f"""
<div>
{image_html}
</div>
"""
gr.HTML(ReasoningTraceExampleHTML)
gr.Markdown("""By clicking 'Next' below, you will start the study, with your progress saved after submitting each question. If you have any other questions or concerns, please contact us directly. Thank you for your participation!
""")
gr.Markdown("## Please enter your information to get a question to evaluate. Please use the same email every time you log onto this evaluation portal, as we use your email to prevent showing repeat questions.")
name = gr.Textbox(label="Name (required)")
email = gr.Textbox(label="Email (required). Please use the same email every time you log onto this evaluation portal, as we use your email to prevent showing repeat questions.")
evaluator_id = gr.Textbox(label="Evaluator ID (required). This is the four-digit ID you received from us for the evaluation study. If you do not have an Evaluator ID or are unsure about your Evaluator ID, please contact us.")
specialty_dd = gr.Dropdown(choices=specialties_list, label="Primary Medical Specialty (required). Go to https://www.abms.org/member-boards/specialty-subspecialty-certificates/ for categorization)", multiselect=True)
subspecialty_dd = gr.Dropdown(choices=subspecialties_list, label="Subspecialty (if applicable). Go to https://www.abms.org/member-boards/specialty-subspecialty-certificates/ for categorization)", multiselect=True)
npi_id = gr.Textbox(label="National Provider Identifier ID (optional). Got to https://npiregistry.cms.hhs.gov/search to search for your NPI ID. If you do not have an NPI ID, please leave this blank.")
years_exp_radio = gr.Radio(
choices=["0-2 years", "3-5 years", "6-10 years", "11-20 years", "20+ years", "Not Applicable"],
label="How many years have you been involved in clinical and/or research activities related to your biomedical area of expertise? (required)"
)
exp_explanation_tb = gr.Textbox(label="Please briefly explain your expertise/experience relevant to evaluating AI for clinical decision support (optional)")
page0_error_box = gr.Markdown("")
with gr.Row():
next_btn_0 = gr.Button("Next")
with gr.Row():
home_btn_0 = gr.Button("Home (your registration info will be saved)")
with Modal(visible=False, elem_id="confirm_modal") as eval_progress_modal:
eval_progress_text = gr.Markdown("You have X questions remaining.")
eval_progress_proceed_btn = gr.Button("OK, proceed to question evaluation")
# Page 1: Pairwise Comparison.
with gr.Column(visible=False) as page1:
gr.Markdown("## Part 1/2: Pairwise Comparison") #Make the number controlled by question indexing!
page1_prompt = gr.HTML()
with gr.Accordion("Click to reveal a reference answer—this is just one correct solution; others are possible.", open=False, elem_id="answer-reference-btn"):
page1_reference_answer = gr.Markdown(
"""
**Reference Answer:**
This is the reference answer content.
""",
elem_classes="reference-box"
)
# Add small red button under the prompt
with gr.Row():
nonsense_btn = gr.Button(
"Wrong Question?",
size="sm",
variant="stop", # red variant
elem_id="invalid-question-btn",
elem_classes=["short-btn"]
)
gr.Markdown(
"<span style='color: #b30000; font-weight: bold;'>Click the button if you think this question does not make sense or is not biomedically-relevant</span>",
render=True
)
nonsense_btn.click(
fn=mark_invalid_question,
inputs=[nonsense_btn_clicked],
outputs=[nonsense_btn_clicked, nonsense_btn],
queue=False,
)
with gr.Row():
# ADDED: Use gr.Chatbot to display the scrollable chat window for Response A.
with gr.Column():
gr.Markdown("**Model A Response:**") # Already bold label.
chat_a = gr.Chatbot(
value=[], # Placeholder for chat history
type="messages",
height=400,
label="Model A Response",
show_copy_button=False,
show_label=True,
render_markdown=True, # Required for markdown/HTML support in messages
avatar_images=None, # Optional: omit user/assistant icons
rtl=False
)
# ADDED: Use gr.Chatbot to display the scrollable chat window for Response B.
with gr.Column():
gr.Markdown("**Model B Response:**")
chat_b = gr.Chatbot(
value=[],
type="messages",
height=400,
label="Model B Response",
show_copy_button=False,
show_label=True,
render_markdown=True, # Required for markdown/HTML support in messages
avatar_images=None, # Optional: omit user/assistant icons
rtl=False
)
gr.Markdown("<br><br>")
gr.Markdown("### For each criterion, select which response did better:")
comparison_reasons_inputs = [] # ADDED: list to store the free-text inputs
pairwise_inputs = []
for crit in criteria_for_comparison:
with gr.Row():
gr.Markdown(crit['text'])
radio = gr.Radio(
choices=[
"👈 Model A", # A
"👉 Model B", # B
"🤝 Tie", # tie
"👎 Neither model did well" # neither
],
label="Which is better?"
)
pairwise_inputs.append(radio)
# ADDED: free text under each comparison
text_input = gr.Textbox(label=f"Reasons for your selection (optional)")
comparison_reasons_inputs.append(text_input)
page1_error_box = gr.Markdown("") # ADDED: display validation errors
with gr.Row():
back_btn_0 = gr.Button("Back")
next_btn_1 = gr.Button("Next: Rate Responses")
with gr.Row():
home_btn_1 = gr.Button("Home Page (your progress on this question will be saved but not submitted)") # ADDED: Home button on page11
# Page 2: Combined Rating Page for both responses.
with gr.Column(visible=False) as page2:
gr.Markdown("## Part 2/2: Rate Model Responses")
# ### EDIT: Show a highlighted prompt as on previous pages.
page2_prompt = gr.HTML()
with gr.Accordion("Click to reveal a reference answer—this is just one correct solution; others are possible.", open=False, elem_id="answer-reference-btn"):
page2_reference_answer = gr.Markdown(
"""
**Reference Answer:**
This is the reference answer content.
""",
elem_classes="reference-box"
)
# ### EDIT: Display both responses side-by-side using Chatbot windows.
with gr.Row():
with gr.Column():
gr.Markdown("**Model A Response:**")
chat_a_rating = gr.Chatbot(
value=[],
type="messages",
height=400,
label="Model A Response",
show_copy_button=False,
render_markdown=True
)
with gr.Column():
gr.Markdown("**Model B Response:**")
chat_b_rating = gr.Chatbot(
value=[],
type="messages",
height=400,
label="Model B Response",
show_copy_button=False,
render_markdown=True
)
gr.Markdown("<br><br>")
gr.Markdown("### For each criterion, select your ratings for each model response:")
# ### EDIT: For each criterion, create a row with two multiple-choice sets (left: Response A, right: Response B) separated by a border.
ratings_A = [] # to store the radio components for response A
ratings_B = [] # to store the radio components for response B
def restrict_choices(pairwise_list, index, score_a, score_b):
"""
Returns (update_for_A, update_for_B).
Enforces rating constraints based on the pairwise choice for the given criterion index.
"""
# Get the specific pairwise choice for this criterion using the index
# Add error handling in case the state/list is not ready or index is wrong
if not pairwise_list or index >= len(pairwise_list):
pairwise_choice = None
else:
pairwise_choice = pairwise_list[index]
base = ["1","2","3","4","5","Unable to Judge"]
# Default: no restrictions unless explicitly set
upd_A = gr.update(choices=base)
upd_B = gr.update(choices=base)
# Skip if no meaningful pairwise choice or either score is "Unable to Judge"
if pairwise_choice is None or pairwise_choice == "👎 Neither model did well" or (score_a is None and score_b is None):
# If one score is UJ but the other isn't, AND it's a Tie, we might still want to restrict the non-UJ one later?
# For now, keep it simple: if either is UJ or choice is Neither/None, don't restrict.
return upd_A, upd_B
# Helper to parse int safely
def to_int(x):
try: return int(x)
except (ValueError, TypeError): return None
a_int = to_int(score_a)
b_int = to_int(score_b)
# --- Apply Restrictions ---
if pairwise_choice == "👈 Model A":
# B must be ≤ A (if A is numeric)
if a_int is not None: #it is None if unable to judge
allowed_b_choices = [str(i) for i in range(1, a_int + 1)] + ["Unable to Judge"]
current_b = score_b if score_b in allowed_b_choices else None # Keep current valid choice
upd_B = gr.update(choices=allowed_b_choices, value=current_b)
# If A is UJ or non-numeric, B is unrestricted by this rule
# else: upd_B remains gr.update(choices=base)
if b_int is not None:
# A must be >= B (if B is numeric)
allowed_a_choices = [str(i) for i in range(b_int, 6)] + ["Unable to Judge"]
current_a = score_a if score_a in allowed_a_choices else None # Keep current valid choice
upd_A = gr.update(choices=allowed_a_choices, value=current_a)
# If B is UJ or non-numeric, A is unrestricted by this rule
# else: upd_A remains gr.update(choices=base)
elif pairwise_choice == "👉 Model B":
# A must be ≤ B (if B is numeric)
if b_int is not None:
allowed_a_choices = [str(i) for i in range(1, b_int + 1)] + ["Unable to Judge"]
current_a = score_a if score_a in allowed_a_choices else None # Keep current valid choice
upd_A = gr.update(choices=allowed_a_choices, value=current_a)
# If B is UJ or non-numeric, A is unrestricted by this rule
# else: upd_A remains gr.update(choices=base)
if a_int is not None:
# B must be >= A (if A is numeric)
allowed_b_choices = [str(i) for i in range(a_int, 6)] + ["Unable to Judge"]
current_b = score_b if score_b in allowed_b_choices else None # Keep current valid choice
upd_B = gr.update(choices=allowed_b_choices, value=current_b)
# If A is UJ or non-numeric, B is unrestricted by this rule
# else: upd_B remains gr.update(choices=base)
elif pairwise_choice == "🤝 Tie":
# If both are numeric, they must match. Enforce based on the one that *just changed*.
# If one changes to numeric, force the other (if also numeric) to match.
# If one changes to UJ, the other is unrestricted.
if a_int is not None:
upd_B = gr.update(choices=[score_a])
elif score_a == "Unable to Judge":
upd_B = gr.update(choices=["Unable to Judge"])
if b_int is not None:
upd_A = gr.update(choices=[score_b])
elif score_b == "Unable to Judge":
upd_A = gr.update(choices=["Unable to Judge"])
return upd_A, upd_B
def clear_selection():
return None, None
pairwise_results_for_display = [gr.Markdown(render=False) for _ in range(len(criteria))]
indices_for_change = []
for i, crit in enumerate(criteria):
index_component = gr.Number(value=i, visible=False, interactive=False)
indices_for_change.append(index_component)
with gr.Column(elem_id="centered-column"):
gr.Markdown(f'<div style="text-align: left;">{crit["text"][0]}</div>')
gr.Markdown(f'<div style="text-align: left;">{crit["text"][1]}</div>')
pairwise_results_for_display[i].render()
with gr.Row():
with gr.Column(scale=1):
rating_a = gr.Radio(choices=["1", "2", "3", "4", "5", "Unable to Judge"],
label=f"Score for Response A - {crit['label']}",
interactive=True)
with gr.Column(scale=1):
rating_b = gr.Radio(choices=["1", "2", "3", "4", "5", "Unable to Judge"],
label=f"Score for Response B - {crit['label']}",
interactive=True)
with gr.Row():
clear_btn = gr.Button("Clear Selection", size="sm", elem_id="clear_btn")
clear_btn.click(fn=clear_selection, outputs=[rating_a,rating_b])
# wire each to re‐restrict the other on change
rating_a.change(
fn=restrict_choices,
inputs=[ pairwise_state, index_component, rating_a, rating_b ],
outputs=[ rating_a, rating_b ]
)
rating_b.change(
fn=restrict_choices,
inputs=[ pairwise_state, index_component, rating_a, rating_b ],
outputs=[ rating_a, rating_b ]
)
ratings_A.append(rating_a)
ratings_B.append(rating_b)
with gr.Row():
back_btn_2 = gr.Button("Back")
submit_btn = gr.Button("Submit (Note: Once submitted, you cannot edit your responses)", elem_id="submit_btn")
with gr.Row():
home_btn_2 = gr.Button("Home Page (your progress on this question will be saved but not submitted)")
result_text = gr.Textbox(label="Validation Result")
# Final Page: Thank you message.
with gr.Column(visible=False, elem_id="final_page") as final_page:
gr.Markdown("## You have no questions left to evaluate. Thank you for your participation!")
# Error Modal: For displaying validation errors.
with Modal("Error", visible=False, elem_id="error_modal") as error_modal:
error_message_box = gr.Markdown()
ok_btn = gr.Button("OK")
# Clicking OK hides the modal.
ok_btn.click(lambda: gr.update(visible=False), None, error_modal)
# Confirmation Modal: Ask for final submission confirmation.
with Modal("Confirm Submission", visible=False, elem_id="confirm_modal") as confirm_modal:
gr.Markdown("Are you sure you want to submit? Once submitted, you cannot edit your responses.")
with gr.Row():
yes_btn = gr.Button("Yes, please submit")
cancel_btn = gr.Button("Cancel")
# --- Define Callback Functions for Confirmation Flow ---
def build_row_dict(data_subset_state, user_info, pairwise, comparisons_reasons, nonsense_btn_clicked, *args):
num_criteria = len(criteria)
ratings_A_vals = list(args[:num_criteria])
ratings_B_vals = list(args[num_criteria:])
prompt_text = data_subset_state['question']
response_A_model = data_subset_state['models'][0]['model']
response_B_model = data_subset_state['models'][1]['model']
timestamp = datetime.datetime.now().isoformat()
row = {
"Timestamp": timestamp,
"Name": user_info[0],
"Email": user_info[1],
"Evaluator ID": user_info[8],
"Specialty": str(user_info[2]),
"Subspecialty": str(user_info[3]),
"Years of Experience": user_info[4],
"Experience Explanation": user_info[5],
"NPI ID": user_info[6],
"Question ID": user_info[7],
"Prompt": prompt_text,
"ResponseA_Model": response_A_model,
"ResponseB_Model": response_B_model,
"Question Makes No Sense or Biomedically Irrelevant": nonsense_btn_clicked,
}
pairwise = [mapping.get(val, val) for val in pairwise]
for i, crit in enumerate(criteria):
label = crit['label']
row[f"Criterion_{label} Comparison: Which is Better?"] = pairwise[i]
row[f"Criterion_{label} Comments"] = comparisons_reasons[i]
row[f"ScoreA_{label}"] = ratings_A_vals[i]
row[f"ScoreB_{label}"] = ratings_B_vals[i]
return row
def final_submit(data_subset_state, user_info, pairwise, comparisons_reasons, nonsense_btn_clicked, *args):
# --- Part 1: Submit the current results (Existing Logic) ---
row_dict = build_row_dict(data_subset_state, user_info, pairwise, comparisons_reasons, nonsense_btn_clicked, *args)
append_to_sheet(user_data=None, custom_row_dict=row_dict, custom_sheet_name=str(TXAGENT_RESULTS_SHEET_BASE_NAME + f"_{evaluator_id}"), add_header_when_create_sheet=True)
name, email, specialty, subspecialty, years_exp_radio, exp_explanation_tb, npi_id, _, evaluator_id = user_info
user_info_new, chat_a, chat_b, page1_prompt, page1_reference_answer, question_for_eval, remaining_count = get_next_eval_question(
name, email, specialty, subspecialty, years_exp_radio, exp_explanation_tb, npi_id, our_methods
)
if remaining_count == 0:
return (
gr.update(visible=False), # page0 (Hide)
gr.update(visible=False), # page2 (Hide)
gr.update(visible=False), # confirm_modal
gr.update(visible=False),
"",
gr.update(visible=True), # final_page (Show)
"",
None,
None,
None,
None,
None,
user_info_new,
)
return (
gr.update(visible=False), # page0 (Hide)
gr.update(visible=False), # page2 (Hide)
gr.update(visible=False), # confirm_modal (Hide)
gr.update(visible=True), # eval_progress_modal (Show)
f"Submission successful! You have {remaining_count} question(s) remaining to evaluate. You may exit the page and return later if you wish.", # eval_progress_text
gr.update(visible=False), # final_page (Hide)
"",
chat_a,
chat_b,
page1_prompt,
page1_reference_answer,
question_for_eval,
user_info_new
)
def cancel_submission():
# Cancel final submission: just hide the confirmation modal.
return gr.update(visible=False)
def reset_everything_except_user_info():
# 3) Reset all pairwise radios & textboxes
reset_pairwise_radios = [gr.update(value=None) for i in range(len(criteria))]
reset_pairwise_reasoning_texts = [gr.update(value=None) for i in range(len(criteria))]
# 4) Reset all rating radios
reset_ratings_A = [gr.update(value=None) for i in range(len(criteria))]
reset_ratings_B = [gr.update(value=None) for i in range(len(criteria))]
return (
# pages
gr.update(visible=True), # page0
gr.update(visible=False), # final_page
# states
# gr.update(value=None), # user_info_state
gr.update(value=None), # pairwise_state
gr.update(value=None), # scores_A_state
gr.update(value=None), # comparison_reasons
gr.update(value=None), # unqualified_A_state
# gr.update(value=None), # data_subset_state
#page0 elements that need to be reset
gr.update(value=""), #page0_error_box
# page1 elements that need to be reset
# gr.update(value=""), #page1_prompt
# gr.update(value=[]), #chat_a
# gr.update(value=[]), #chat_b
gr.update(value=""), #page1_error_box
# page2 elements that need to be reset
gr.update(value=""), #page2_prompt
gr.update(value=""), #page2_reference_answer
gr.update(value=[]), #chat_a_rating
gr.update(value=[]), #chat_b_rating
gr.update(value=""), #result_text
#lists of gradio elements that need to be unrolled
*reset_pairwise_radios,
*reset_pairwise_reasoning_texts,
*reset_ratings_A,
*reset_ratings_B
)
# --- Define Transitions Between Pages ---
# For the "Participate in Evaluation" button, transition to page0
participate_eval_btn.click(
fn=go_to_page0_from_minus1,
inputs=None,
outputs=[page_minus1, page0]
)
# Transition from Page 0 (Welcome) to Page 1.
next_btn_0.click(
fn=go_to_eval_progress_modal,
inputs=[name, email, evaluator_id, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id],
outputs=[page0, page1, user_info_state, page0_error_box, chat_a, chat_b, page1_prompt, page1_reference_answer, data_subset_state,eval_progress_modal,eval_progress_text],
scroll_to_output=True
)
eval_progress_proceed_btn.click(
fn=go_to_page1,
inputs=None,
outputs=[eval_progress_modal, page0, page1],
scroll_to_output=True
)
#Home page buttons to simply shown page-1
home_btn_0.click(lambda: (gr.update(visible=True), gr.update(visible=False)), None, [page_minus1, page0])
home_btn_1.click(lambda: (gr.update(visible=True), gr.update(visible=False)), None, [page_minus1, page1])
home_btn_2.click(lambda: (gr.update(visible=True), gr.update(visible=False)), None, [page_minus1, page2])
# Transition from Page 1 to Page 0 (Back button).
back_btn_0.click(
fn=lambda: (gr.update(visible=True), gr.update(visible=False)),
inputs=None,
outputs=[page0, page1]
)
# Transition from Page 1 (Pairwise) to the combined Rating Page (Page 2).
next_btn_1.click(
fn=go_to_page2, # ### EDIT: Rename or update the function to simply pass the pairwise inputs if needed.
inputs=[data_subset_state,*pairwise_inputs,*comparison_reasons_inputs],
outputs=[page1, page2, pairwise_state, comparison_reasons, page1_error_box, chat_a_rating, chat_b_rating, page2_prompt, page2_reference_answer,*pairwise_results_for_display],
scroll_to_output=True
)
# Transition from Rating Page (Page 2) back to Pairwise page.
back_btn_2.click(
fn=lambda: (gr.update(visible=True), gr.update(visible=False)),
inputs=None,
outputs=[page1, page2],
scroll_to_output=True
)
# --- Submission: Validate the Ratings and then Process the Result ---
def process_result(result):
# If validation passed, show the confirmation modal and proceed.
if result == "No errors in responses; feel free to submit!":
return (
gr.update(), # Show page 3
gr.update(), # Hide final page
gr.update(visible=True), # Show confirmation modal
gr.update(visible=False), # Hide error modal
gr.update(value="") # EDIT: Clear the error_message_box
)
else:
# If validation fails, show the error modal and display the error in error_message_box.
return (
gr.update(), # Keep page3 as is
gr.update(), # Keep final page unchanged
gr.update(visible=False), # Hide confirmation modal
gr.update(visible=True), # Show error modal
gr.update(value=result) # EDIT: Update error_message_box with the validation error
)
# ### EDIT: Update the submission callback to use the new radio inputs.
submit_btn.click(
fn=validate_ratings,
inputs=[pairwise_state, *ratings_A, *ratings_B],
outputs=[error_message_box, result_text]
).then(
fn=process_result,
inputs=error_message_box,
outputs=[page2, final_page, confirm_modal, error_modal, error_message_box],
scroll_to_output=True
)
# Finalize submission if user confirms.
question_submission_event = yes_btn.click(
fn=final_submit,
inputs=[data_subset_state, user_info_state, pairwise_state, comparison_reasons, nonsense_btn_clicked, *ratings_A, *ratings_B],
outputs=[
page0, # Controlled by final_submit return value 1
page2, # Controlled by final_submit return value 2
confirm_modal, # Controlled by final_submit return value 3
eval_progress_modal, # Controlled by final_submit return value 4
eval_progress_text, # Controlled by final_submit return value 5
final_page, # Controlled by final_submit return value 6
page0_error_box,
chat_a,
chat_b,
page1_prompt,
page1_reference_answer,
data_subset_state,
user_info_state,
],
scroll_to_output=True
)
# Cancel final submission.
cancel_btn.click(
fn=cancel_submission,
inputs=None,
outputs=confirm_modal
)
# Reset everything and evaluate another question button
question_submission_event.then(
fn=reset_everything_except_user_info,
inputs=[],
outputs=[
# states
# user_info_state,
pairwise_state,
scores_A_state,
comparison_reasons,
unqualified_A_state,
# data_subset_state,
#page0 elements that need to be reset
page0_error_box,
# # page1 elements that need to be reset
# page1_prompt,
# chat_a,
# chat_b,
page1_error_box,
# page2 elements that need to be reset
page2_prompt,
page2_reference_answer,
chat_a_rating,
chat_b_rating,
result_text,
#lists of gradio elements that need to be unrolled
*pairwise_inputs,
*comparison_reasons_inputs,
*ratings_A,
*ratings_B
]
)
demo.launch(share=True, allowed_paths = ["."])
|