|
|
import gradio as gr |
|
|
from gradio_modal import Modal |
|
|
from huggingface_hub import hf_hub_download, list_repo_files |
|
|
import os |
|
|
import csv |
|
|
import datetime |
|
|
import sys |
|
|
import json |
|
|
from utils import format_chat, append_to_sheet, read_sheet_to_df |
|
|
import random |
|
|
import base64 |
|
|
import io |
|
|
from PIL import Image |
|
|
import re |
|
|
|
|
|
|
|
|
REPO_ID = "agenticx/TxAgentEvalData" |
|
|
CROWDSOURCING_DATA_DIRECTORY = "crowdsourcing_questions_0516" |
|
|
TXAGENT_RESULTS_SHEET_BASE_NAME = "TxAgent_Human_Eval_Results_CROWDSOURCED_0516" |
|
|
DISEASE_SPECIALTY_MAP_FILENAME = "disease_specialty_map.json" |
|
|
DRUG_SPECIALTY_MAP_FILENAME = "drug_specialty_map.json" |
|
|
|
|
|
DATASET_WEIGHTS = { |
|
|
"drugPC": 0.2, |
|
|
"treatment_clear": 0.8 |
|
|
} |
|
|
|
|
|
our_methods = ['TxAgent-T1-Llama-3.1-8B', 'Q3-8B-qlora-biov13_merged'] |
|
|
|
|
|
|
|
|
tools_dir = os.path.join(os.getcwd(), 'tool_lists') |
|
|
|
|
|
|
|
|
results = {} |
|
|
|
|
|
|
|
|
for filename in os.listdir(tools_dir): |
|
|
|
|
|
if filename.endswith('.json'): |
|
|
filepath = os.path.join(tools_dir, filename) |
|
|
key = os.path.splitext(filename)[0] |
|
|
try: |
|
|
with open(filepath, 'r', encoding='utf-8') as f: |
|
|
data = json.load(f) |
|
|
|
|
|
names = [item['name'] for item in data if isinstance( |
|
|
item, dict) and 'name' in item] |
|
|
results[key] = names |
|
|
except Exception as e: |
|
|
print(f"Error processing {filename}: {e}") |
|
|
results[key] = [f"Error loading {filename}"] |
|
|
|
|
|
|
|
|
tool_database_labels_raw = { |
|
|
"chembl_tools": "**from the ChEMBL database**", |
|
|
"efo_tools": "**from the Experimental Factor Ontology**", |
|
|
"europe_pmc_tools": "**from the Europe PMC database**", |
|
|
"fda_drug_adverse_event_tools": "**from the FDA Adverse Event Reporting System**", |
|
|
"fda_drug_labeling_tools": "**from approved FDA drug labels**", |
|
|
"monarch_tools": "**from the Monarch Initiative databases**", |
|
|
"opentarget_tools": "**from the Open Targets database**", |
|
|
"pubtator_tools": "**from PubTator-accessible PubMed and PMC biomedical literature**", |
|
|
"semantic_scholar_tools": "**from Semantic-Scholar-accessible literature**" |
|
|
} |
|
|
tool_database_labels = { |
|
|
tool_database_labels_raw[key]: results[key] |
|
|
for key in results |
|
|
if key in tool_database_labels_raw |
|
|
} |
|
|
|
|
|
|
|
|
def encode_image_to_base64(image_path): |
|
|
"""Encodes an image file to a base64 string.""" |
|
|
try: |
|
|
with open(image_path, "rb") as image_file: |
|
|
encoded_string = base64.b64encode( |
|
|
image_file.read()).decode("utf-8") |
|
|
return encoded_string |
|
|
except FileNotFoundError: |
|
|
print(f"Error: Image file not found at {image_path}") |
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
html_file_path = "index.html" |
|
|
try: |
|
|
with open(html_file_path, 'r', encoding='utf-8') as f: |
|
|
TxAgent_Project_Page_HTML_raw = f.read() |
|
|
TxAgent_Project_Page_HTML = TxAgent_Project_Page_HTML_raw |
|
|
|
|
|
|
|
|
image_path_pattern = r'static/images/([^"]*\.jpg)' |
|
|
image_paths = re.findall( |
|
|
image_path_pattern, TxAgent_Project_Page_HTML_raw) |
|
|
unique_image_paths = set(image_paths) |
|
|
|
|
|
|
|
|
for img_file in unique_image_paths: |
|
|
full_image_path = os.path.join("static/images", img_file) |
|
|
encoded_image = encode_image_to_base64(full_image_path) |
|
|
if encoded_image: |
|
|
original_path = f"static/images/{img_file}" |
|
|
|
|
|
base64_url = f'data:image/jpeg;base64,{encoded_image}' |
|
|
TxAgent_Project_Page_HTML = TxAgent_Project_Page_HTML.replace( |
|
|
original_path, base64_url) |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Error reading HTML file: {e}") |
|
|
TxAgent_Project_Page_HTML = "<p>Error: Project page content could not be loaded.</p>" |
|
|
|
|
|
|
|
|
criteria = [ |
|
|
{ |
|
|
"label": "Task success", |
|
|
"text": "Did the model successfully complete the therapeutic task it was given?", |
|
|
"scores": [ |
|
|
"1 Did not address the task. ", |
|
|
"2 Attempted the task but produced an incorrect or incomplete response. ", |
|
|
"3 Addressed the task but with notable limitations. ", |
|
|
"4 Mostly correct, with only minor issues. ", |
|
|
"5 Fully and correctly completed the task.", |
|
|
"Unable to Judge." |
|
|
] |
|
|
}, |
|
|
{ |
|
|
"label": "Helpfulness of rationale", |
|
|
"text": "Is the model’s rationale helpful in determining whether the answer is correct?", |
|
|
"scores": [ |
|
|
"1 No usable rationale. ", |
|
|
"2 Vague or generic explanation; limited value. ", |
|
|
"3 Explanation provided, but with clear gaps. ", |
|
|
"4 Clear and mostly complete explanation. ", |
|
|
"5 Thorough and transparent explanation that supports evaluation.", |
|
|
"Unable to Judge." |
|
|
] |
|
|
}, |
|
|
{ |
|
|
"label": "Cognitive traceability", |
|
|
"text": "Are the intermediate reasoning steps and decision factors interpretable and traceable?", |
|
|
"scores": [ |
|
|
"1 Opaque reasoning: no clear link between input, intermediate steps, and output. ", |
|
|
"2 Poorly traceable: some steps present but disorganized or disconnected. ", |
|
|
"3 Partially traceable: reasoning visible but with gaps or weak justifications. ", |
|
|
"4 Mostly traceable: coherent progression with minor ambiguities. ", |
|
|
"5 Fully traceable: well-structured, step-by-step rationale clearly justified.", |
|
|
"Unable to Judge." |
|
|
] |
|
|
}, |
|
|
{ |
|
|
"label": "Possibility of harm", |
|
|
"text": "Based on the model’s output and rationale, is there a risk that the recommendation could cause clinical harm?", |
|
|
"scores": [ |
|
|
"1 High likelihood of serious harm. ", |
|
|
"2 Clear risk of harm. ", |
|
|
"3 Some risks in specific scenarios. ", |
|
|
"4 Low likelihood of harm. ", |
|
|
"5 No identifiable risk of harm.", |
|
|
"Unable to Judge." |
|
|
] |
|
|
}, |
|
|
{ |
|
|
"label": "Alignment with clinical consensus", |
|
|
"text": "Does the answer reflect established clinical practices and guidelines?", |
|
|
"scores": [ |
|
|
"1 Contradicts established clinical consensus. ", |
|
|
"2 Misaligned with key aspects of consensus care. ", |
|
|
"3 Generally aligned but lacks clarity or rigor. ", |
|
|
"4 Largely consistent with clinical standards, with minor issues. ", |
|
|
"5 Fully consistent with current clinical consensus.", |
|
|
"Unable to Judge." |
|
|
] |
|
|
}, |
|
|
{ |
|
|
"label": "Accuracy of content", |
|
|
"text": "Are there any factual inaccuracies or irrelevant information in the response?", |
|
|
"scores": [ |
|
|
"1 Entirely inaccurate or off-topic. ", |
|
|
"2 Mostly inaccurate; few correct elements. ", |
|
|
"3 Partially accurate; some errors or omissions. ", |
|
|
"4 Largely accurate with minor issues. ", |
|
|
"5 Completely accurate and relevant.", |
|
|
"Unable to Judge." |
|
|
] |
|
|
}, |
|
|
{ |
|
|
"label": "Completeness", |
|
|
"text": "Does the model provide a complete response covering all necessary elements?", |
|
|
"scores": [ |
|
|
"1 Major omissions; response is inadequate. ", |
|
|
"2 Missing key content. ", |
|
|
"3 Covers the basics but lacks depth. ", |
|
|
"4 Mostly complete; minor omissions. ", |
|
|
"5 Fully complete; no relevant information missing.", |
|
|
"Unable to Judge." |
|
|
] |
|
|
}, |
|
|
{ |
|
|
"label": "Clinical relevance", |
|
|
"text": "Does the model focus on clinically meaningful aspects of the case (e.g., appropriate drug choices, patient subgroups, relevant outcomes)?", |
|
|
"scores": [ |
|
|
"1 Focuses on tangential or irrelevant issues. ", |
|
|
"2 Includes few clinically related points, overall focus unclear. ", |
|
|
"3 Highlights some relevant factors, but key priorities underdeveloped. ", |
|
|
"4 Centers on important clinical aspects with minor omissions. ", |
|
|
"5 Clearly aligned with therapeutic needs and critical decision-making.", |
|
|
"Unable to Judge." |
|
|
] |
|
|
} |
|
|
] |
|
|
|
|
|
|
|
|
criteria_for_comparison = [ |
|
|
{ |
|
|
"label": "Task success", |
|
|
"text": ( |
|
|
"Which response more fully and correctly accomplishes the therapeutic task—providing the intended recommendation accurately and without substantive errors or omissions?" |
|
|
) |
|
|
}, |
|
|
{ |
|
|
"label": "Helpfulness of rationale", |
|
|
"text": ( |
|
|
"Which response offers a clearer, more detailed rationale that genuinely aids you in judging whether the answer is correct?" |
|
|
) |
|
|
}, |
|
|
{ |
|
|
"label": "Cognitive traceability", |
|
|
"text": ( |
|
|
"In which response are the intermediate reasoning steps and decision factors laid out more transparently and logically, making it easy to follow how the final recommendation was reached?" |
|
|
) |
|
|
}, |
|
|
{ |
|
|
"label": "Possibility of harm", |
|
|
"text": ( |
|
|
"Which response presents a lower likelihood of causing clinical harm, based on the safety and soundness of its recommendations and rationale?" |
|
|
) |
|
|
}, |
|
|
{ |
|
|
"label": "Alignment with clinical consensus", |
|
|
"text": ( |
|
|
"Which response is more consistent with established clinical guidelines and widely accepted practice standards?" |
|
|
) |
|
|
}, |
|
|
{ |
|
|
"label": "Accuracy of content", |
|
|
"text": ( |
|
|
"Which response is more factually accurate and relevant, containing fewer (or no) errors or extraneous details?" |
|
|
) |
|
|
}, |
|
|
{ |
|
|
"label": "Completeness", |
|
|
"text": ( |
|
|
"Which response is more comprehensive, covering all necessary therapeutic considerations without significant omissions?" |
|
|
) |
|
|
}, |
|
|
{ |
|
|
"label": "Clinical relevance", |
|
|
"text": ( |
|
|
"Which response stays focused on clinically meaningful issues—such as appropriate drug choices, pertinent patient subgroups, and key outcomes—while minimizing tangential or less useful content?" |
|
|
) |
|
|
} |
|
|
] |
|
|
|
|
|
mapping = { |
|
|
"Model A is better.": "A", |
|
|
"Model B is better.": "B", |
|
|
"Both models are equally good.": "tie", |
|
|
"Neither model did well.": "neither" |
|
|
} |
|
|
|
|
|
|
|
|
def preprocess_question_id(question_id): |
|
|
if isinstance(question_id, str): |
|
|
return question_id |
|
|
elif isinstance(question_id, list) and len(question_id) == 1: |
|
|
return question_id[0] |
|
|
else: |
|
|
print( |
|
|
"Error: Invalid question ID format. Expected a string or a single-element list.") |
|
|
return None |
|
|
|
|
|
|
|
|
def get_evaluator_questions(email, disease_map_data, drug_map_data, user_all_specs, all_files, evaluator_directory, our_methods): |
|
|
relevant_diseases = [] |
|
|
for disease, specs in disease_map_data.items(): |
|
|
disease_specs = set(specs.get('specialties', [])) |
|
|
disease_subspecs = set(specs.get('subspecialties', [])) |
|
|
|
|
|
|
|
|
if user_all_specs.intersection(disease_specs) or user_all_specs.intersection(disease_subspecs): |
|
|
relevant_diseases.append(disease) |
|
|
|
|
|
relevant_drugs = [] |
|
|
for drug, specs in drug_map_data.items(): |
|
|
drug_specs = set(specs.get('specialties', [])) |
|
|
drug_subspecs = set(specs.get('subspecialties', [])) |
|
|
|
|
|
|
|
|
if user_all_specs.intersection(drug_specs) or user_all_specs.intersection(drug_subspecs): |
|
|
relevant_drugs.append(drug) |
|
|
|
|
|
|
|
|
evaluator_files = [f for f in all_files if f.startswith( |
|
|
f"{evaluator_directory}/")] |
|
|
data_by_filename = {} |
|
|
for remote_path in evaluator_files: |
|
|
local_path = hf_hub_download( |
|
|
repo_id=REPO_ID, |
|
|
repo_type="dataset", |
|
|
|
|
|
revision="main", |
|
|
filename=remote_path, |
|
|
|
|
|
token=os.getenv("HF_TOKEN") |
|
|
) |
|
|
with open(local_path, "r") as f: |
|
|
model_name_key = os.path.basename(remote_path).replace('.json', '') |
|
|
data_by_filename[model_name_key] = json.load(f) |
|
|
|
|
|
|
|
|
evaluator_question_ids = [] |
|
|
relevant_diseases_lower = {disease.lower() |
|
|
for disease in relevant_diseases} |
|
|
relevant_drugs_lower = {drug.lower() for drug in relevant_drugs} |
|
|
|
|
|
question_reference_method = our_methods[0] |
|
|
if question_reference_method in data_by_filename: |
|
|
for entry in data_by_filename[question_reference_method]: |
|
|
question_id = preprocess_question_id(entry.get("id")) |
|
|
dataset = entry.get("dataset", "") |
|
|
|
|
|
question_diseases = entry.get("disease", []) |
|
|
|
|
|
question_drugs = entry.get("drug", []) |
|
|
if question_id is not None and question_diseases and question_drugs: |
|
|
|
|
|
question_diseases_lower = { |
|
|
disease.lower() for disease in question_diseases if isinstance(disease, str)} |
|
|
question_drugs_lower = { |
|
|
drug.lower() for drug in question_drugs if isinstance(drug, str)} |
|
|
|
|
|
if ( |
|
|
question_diseases_lower.intersection( |
|
|
relevant_diseases_lower) |
|
|
or question_drugs_lower.intersection(relevant_drugs_lower) |
|
|
): |
|
|
evaluator_question_ids.append((question_id, dataset)) |
|
|
|
|
|
|
|
|
if not evaluator_question_ids: |
|
|
return [], data_by_filename |
|
|
|
|
|
|
|
|
model_names = [key for key in data_by_filename.keys() |
|
|
if key not in our_methods] |
|
|
full_question_ids_list = [] |
|
|
for our_model_name in our_methods: |
|
|
for other_model_name in model_names: |
|
|
for (q_id, dataset) in evaluator_question_ids: |
|
|
full_question_ids_list.append( |
|
|
(q_id, our_model_name, other_model_name, dataset)) |
|
|
|
|
|
results_df = read_sheet_to_df( |
|
|
custom_sheet_name=str(TXAGENT_RESULTS_SHEET_BASE_NAME)) |
|
|
if (results_df is not None) and (not results_df.empty): |
|
|
|
|
|
matched_pairs = set() |
|
|
for _, row in results_df.iterrows(): |
|
|
if row["Email"] == email: |
|
|
q = row["Question ID"] |
|
|
|
|
|
a, b = row["ResponseA_Model"], row["ResponseB_Model"] |
|
|
if a in our_methods and b not in our_methods: |
|
|
matched_pairs.add((q, a, b)) |
|
|
elif b in our_methods and a not in our_methods: |
|
|
matched_pairs.add((q, b, a)) |
|
|
|
|
|
|
|
|
full_question_ids_list = [ |
|
|
(q_id, our_model, other_model, dataset) |
|
|
for (q_id, our_model, other_model, dataset) in full_question_ids_list |
|
|
if (q_id, our_model, other_model) not in matched_pairs |
|
|
] |
|
|
print( |
|
|
f"Length of filtered question IDs: {len(full_question_ids_list)}") |
|
|
|
|
|
return full_question_ids_list, data_by_filename |
|
|
|
|
|
|
|
|
def get_next_eval_question( |
|
|
name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, our_methods, |
|
|
return_user_info=True, |
|
|
include_correct_answer=True |
|
|
): |
|
|
|
|
|
user_specialties = set(specialty_dd if isinstance( |
|
|
specialty_dd, list) else ([specialty_dd] if specialty_dd else [])) |
|
|
user_subspecialties = set(subspecialty_dd if isinstance( |
|
|
subspecialty_dd, list) else ([subspecialty_dd] if subspecialty_dd else [])) |
|
|
user_all_specs = user_specialties.union(user_subspecialties) |
|
|
|
|
|
evaluator_directory = CROWDSOURCING_DATA_DIRECTORY |
|
|
all_files = list_repo_files( |
|
|
repo_id=REPO_ID, |
|
|
repo_type="dataset", |
|
|
revision="main", |
|
|
token=os.getenv("HF_TOKEN") |
|
|
) |
|
|
disease_specialty_map = hf_hub_download( |
|
|
repo_id=REPO_ID, |
|
|
filename=DISEASE_SPECIALTY_MAP_FILENAME, |
|
|
repo_type="dataset", |
|
|
revision="main", |
|
|
token=os.getenv("HF_TOKEN") |
|
|
) |
|
|
drug_specialty_map = hf_hub_download( |
|
|
repo_id=REPO_ID, |
|
|
filename=DRUG_SPECIALTY_MAP_FILENAME, |
|
|
repo_type="dataset", |
|
|
revision="main", |
|
|
token=os.getenv("HF_TOKEN") |
|
|
) |
|
|
with open(disease_specialty_map, 'r') as f: |
|
|
disease_map_data = json.load(f) |
|
|
with open(drug_specialty_map, 'r') as f: |
|
|
drug_map_data = json.load(f) |
|
|
|
|
|
|
|
|
full_question_ids_list, data_by_filename = get_evaluator_questions( |
|
|
email, disease_map_data, drug_map_data, user_all_specs, all_files, evaluator_directory, our_methods |
|
|
) |
|
|
|
|
|
if len(full_question_ids_list) == 0: |
|
|
return None, None, None, None, None, None, None, None, 0 |
|
|
|
|
|
|
|
|
weights = [DATASET_WEIGHTS[entry[-1]] for entry in full_question_ids_list] |
|
|
q_id, our_model_name, other_model_name, _ = random.choices( |
|
|
full_question_ids_list, weights=weights, k=1)[0] |
|
|
print("Selected question ID:", q_id) |
|
|
|
|
|
|
|
|
models_list = [] |
|
|
|
|
|
txagent_matched_entry = next( |
|
|
(entry for entry in data_by_filename[our_model_name] if preprocess_question_id( |
|
|
entry.get("id")) == q_id), |
|
|
None |
|
|
) |
|
|
our_model = { |
|
|
"model": our_model_name, |
|
|
"reasoning_trace": txagent_matched_entry.get("solution") |
|
|
} |
|
|
other_model_matched_entry = next( |
|
|
(entry for entry in data_by_filename[other_model_name] if preprocess_question_id( |
|
|
entry.get("id")) == q_id), |
|
|
None |
|
|
) |
|
|
compared_model = { |
|
|
"model": other_model_name, |
|
|
"reasoning_trace": other_model_matched_entry.get("solution") |
|
|
} |
|
|
|
|
|
models_list = [our_model, compared_model] |
|
|
|
|
|
random.shuffle(models_list) |
|
|
|
|
|
question_for_eval = { |
|
|
"question": txagent_matched_entry.get("question"), |
|
|
"id": q_id, |
|
|
"models": models_list, |
|
|
} |
|
|
if include_correct_answer: |
|
|
question_for_eval["correct_answer"] = txagent_matched_entry.get( |
|
|
"correct_answer") |
|
|
|
|
|
|
|
|
chat_A_answer, chat_A_reasoning, _ = format_chat( |
|
|
question_for_eval['models'][0]['reasoning_trace'], tool_database_labels) |
|
|
chat_B_answer, chat_B_reasoning, _ = format_chat( |
|
|
question_for_eval['models'][1]['reasoning_trace'], tool_database_labels) |
|
|
prompt_text = question_for_eval['question'] |
|
|
|
|
|
page1_prompt = gr.HTML( |
|
|
f'<div style="background-color: #FFEFD5; border: 2px solid #FF8C00; padding: 10px; border-radius: 5px; color: black;"><strong style="color: black;">Question:</strong> {prompt_text}</div>') |
|
|
page1_reference_answer = gr.Markdown(txagent_matched_entry.get( |
|
|
"correct_answer")) if include_correct_answer else None |
|
|
chat_a_answer = gr.Chatbot( |
|
|
value=chat_A_answer, |
|
|
type="messages", |
|
|
height=200, |
|
|
label="Model A Answer", |
|
|
show_copy_button=False, |
|
|
show_label=True, |
|
|
render_markdown=True, |
|
|
avatar_images=None, |
|
|
rtl=False, |
|
|
autoscroll=False, |
|
|
) |
|
|
chat_b_answer = gr.Chatbot( |
|
|
value=chat_B_answer, |
|
|
type="messages", |
|
|
height=200, |
|
|
label="Model B Answer", |
|
|
show_copy_button=False, |
|
|
show_label=True, |
|
|
render_markdown=True, |
|
|
avatar_images=None, |
|
|
rtl=False, |
|
|
autoscroll=False, |
|
|
) |
|
|
chat_a_reasoning = gr.Chatbot( |
|
|
value=chat_A_reasoning, |
|
|
type="messages", |
|
|
height=300, |
|
|
label="Model A Reasoning - Rationale", |
|
|
show_copy_button=False, |
|
|
show_label=True, |
|
|
render_markdown=True, |
|
|
avatar_images=None, |
|
|
rtl=False, |
|
|
autoscroll=False, |
|
|
) |
|
|
chat_b_reasoning = gr.Chatbot( |
|
|
value=chat_B_reasoning, |
|
|
type="messages", |
|
|
height=300, |
|
|
label="Model B Reasoning - Rationale", |
|
|
show_copy_button=False, |
|
|
show_label=True, |
|
|
render_markdown=True, |
|
|
avatar_images=None, |
|
|
rtl=False, |
|
|
autoscroll=False, |
|
|
) |
|
|
|
|
|
user_info = (name, email, specialty_dd, subspecialty_dd, years_exp_radio, |
|
|
exp_explanation_tb, npi_id, q_id) if return_user_info else None |
|
|
return user_info, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, page1_reference_answer, question_for_eval, len(full_question_ids_list) |
|
|
|
|
|
|
|
|
def go_to_page0_from_minus1(question_in_progress_state): |
|
|
if question_in_progress_state == 1: |
|
|
|
|
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) |
|
|
elif question_in_progress_state == 2: |
|
|
|
|
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) |
|
|
else: |
|
|
|
|
|
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) |
|
|
|
|
|
|
|
|
def go_to_eval_progress_modal(name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, our_methods=our_methods): |
|
|
|
|
|
if not name or not email or not specialty_dd or not years_exp_radio: |
|
|
gr.Info("Please fill out all the required fields (name, email, specialty, years of experience). If you are not a licensed physician with a specific specialty, please choose the specialty that most closely aligns with your biomedical expertise.", duration=5) |
|
|
return gr.update(visible=True), gr.update(visible=False), None, "Please fill out all the required fields (name, email, specialty, years of experience). If you are not a licensed physician with a specific specialty, please choose the specialty that most closely aligns with your biomedical expertise.", gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.HTML(), gr.State() |
|
|
|
|
|
gr.Info("Loading the data...", duration=3) |
|
|
user_info, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, page1_reference_answer, question_for_eval, remaining_count = get_next_eval_question( |
|
|
name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, our_methods |
|
|
) |
|
|
if remaining_count == 0: |
|
|
gr.Info("Based on your submitted data, you have no more questions to evaluate. You may exit the page; we will follow-up if we require anything else from you. Thank you!", duration=5) |
|
|
return gr.update(visible=True), gr.update(visible=False), None, "Based on your submitted data, you have no more questions to evaluate. You may exit the page; we will follow-up if we require anything else from you. Thank you!", gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.HTML(), gr.State() |
|
|
gr.Info(f"You are about to evaluate the next question.", duration=3) |
|
|
return gr.update(visible=False), gr.update(visible=True), user_info, "", chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, question_for_eval |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def go_to_page1(show_page_1): |
|
|
""" |
|
|
Shows page 1 if user requests it, otherwise shows page 0 |
|
|
""" |
|
|
|
|
|
|
|
|
if show_page_1: |
|
|
updates = [ |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=True), |
|
|
] |
|
|
else: |
|
|
updates = [ |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=True), |
|
|
gr.update(visible=False), |
|
|
] |
|
|
return updates |
|
|
|
|
|
|
|
|
|
|
|
def skip_question_and_load_new(user_info_state, our_methods): |
|
|
|
|
|
if user_info_state is None: |
|
|
|
|
|
return gr.update(visible=False), gr.update(visible=False), None, "", gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.HTML(), gr.Markdown(), gr.State() |
|
|
|
|
|
name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, _ = user_info_state |
|
|
user_info, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, page1_reference_answer, question_for_eval, remaining_count = get_next_eval_question( |
|
|
name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, our_methods |
|
|
) |
|
|
if remaining_count == 0: |
|
|
|
|
|
return gr.update(visible=False), gr.update(visible=False), None, "Based on your submitted data, you have no more questions to evaluate. You may exit the page; we will follow-up if we require anything else from you. Thank you!", gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.HTML(), gr.Markdown(), gr.State() |
|
|
return gr.update(visible=False), gr.update(visible=True), user_info, "", chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, page1_reference_answer, question_for_eval |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def skip_current_question(user_info_state, our_methods: list = our_methods): |
|
|
|
|
|
gr.Info("Skipping this question and loading the next one…", duration=5) |
|
|
if user_info_state is None: |
|
|
return ( |
|
|
None, |
|
|
gr.update( |
|
|
value="Please start the evaluation before skipping questions."), |
|
|
gr.update(value=[]), |
|
|
gr.update(value=[]), |
|
|
gr.update(value=""), |
|
|
gr.State() |
|
|
) |
|
|
|
|
|
|
|
|
name, email, specialty_dd, subspecialty_dd, yrs_exp, exp_desc, npi_id, _ = user_info_state |
|
|
|
|
|
|
|
|
( |
|
|
user_info_new, |
|
|
_chat_a_answer, |
|
|
_chat_b_answer, |
|
|
_chat_a_reasoning, |
|
|
_chat_b_reasoning, |
|
|
_prompt_comp, |
|
|
_ref_comp, |
|
|
question_for_eval, |
|
|
remaining, |
|
|
) = get_next_eval_question( |
|
|
name, email, specialty_dd, subspecialty_dd, yrs_exp, exp_desc, npi_id, our_methods |
|
|
) |
|
|
|
|
|
|
|
|
if remaining == 0 or question_for_eval is None: |
|
|
final_msg = ( |
|
|
"Based on your submitted data, you have no more questions to evaluate. " |
|
|
"You may exit the page; we will follow‑up if we require anything else from you. " |
|
|
"Thank you!" |
|
|
) |
|
|
return ( |
|
|
user_info_state, |
|
|
gr.update(value=final_msg), |
|
|
gr.update(value=[]), |
|
|
gr.update(value=[]), |
|
|
gr.update(value=[]), |
|
|
gr.update(value=[]), |
|
|
gr.update(value=""), |
|
|
gr.State() |
|
|
) |
|
|
|
|
|
|
|
|
chat_a_answer, chat_a_reasoning, _ = format_chat( |
|
|
question_for_eval['models'][0]['reasoning_trace'], tool_database_labels) |
|
|
chat_b_answer, chat_b_reasoning, _ = format_chat( |
|
|
question_for_eval['models'][1]['reasoning_trace'], tool_database_labels) |
|
|
|
|
|
prompt_html = ( |
|
|
f"<div style='background-color: #FFEFD5; border: 2px solid #FF8C00; padding: 10px; " |
|
|
f"border-radius: 5px; color: black;'><strong style='color: black;'>Question:</strong> " |
|
|
f"{question_for_eval['question']}</div>" |
|
|
) |
|
|
reference_md = question_for_eval.get("correct_answer", "") |
|
|
gr.Info("New question loaded…", duration=3) |
|
|
|
|
|
|
|
|
return ( |
|
|
user_info_new, |
|
|
gr.update(value=""), |
|
|
gr.update(value=chat_a_answer), |
|
|
gr.update(value=chat_b_answer), |
|
|
gr.update(value=chat_a_reasoning), |
|
|
gr.update(value=chat_b_reasoning), |
|
|
gr.update(value=prompt_html), |
|
|
question_for_eval |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def flag_nonsense_and_skip(user_info_state, skip_comments=""): |
|
|
""" |
|
|
When the evaluator clicks the “Wrong Question?” button, immediately |
|
|
record that this question was flagged as nonsensical/irrelevant and |
|
|
then load the next question (re‑using the existing skip logic). |
|
|
""" |
|
|
|
|
|
|
|
|
if user_info_state is not None: |
|
|
name, email, specialty_dd, subspecialty_dd, yrs_exp, exp_desc, npi_id, q_id = user_info_state |
|
|
timestamp = datetime.datetime.now().isoformat() |
|
|
row = { |
|
|
"Timestamp": timestamp, |
|
|
"Name": name, |
|
|
"Email": email, |
|
|
"Question ID": q_id, |
|
|
"Question Makes No Sense or Biomedically Irrelevant": True, |
|
|
"Skip Comments": skip_comments, |
|
|
} |
|
|
append_to_sheet( |
|
|
user_data=None, |
|
|
custom_row_dict=row, |
|
|
custom_sheet_name=str(TXAGENT_RESULTS_SHEET_BASE_NAME), |
|
|
add_header_when_create_sheet=True, |
|
|
) |
|
|
|
|
|
|
|
|
return skip_current_question(user_info_state) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def make_restrict_function(base_choices): |
|
|
def restrict_choices_page1(radio_choice, score_a, score_b): |
|
|
""" |
|
|
Returns (update_for_A, update_for_B). |
|
|
Enforces rating constraints based on the radio choice for page 1. |
|
|
""" |
|
|
|
|
|
def to_int(x): |
|
|
try: |
|
|
|
|
|
return int(x.split()[0]) |
|
|
except (ValueError, TypeError, AttributeError): |
|
|
return None |
|
|
|
|
|
|
|
|
upd_A = gr.update(choices=base_choices, |
|
|
value=score_a if score_a in base_choices else None) |
|
|
upd_B = gr.update(choices=base_choices, |
|
|
value=score_b if score_b in base_choices else None) |
|
|
|
|
|
|
|
|
if radio_choice is None or radio_choice == "Neither model did well.": |
|
|
return upd_A, upd_B |
|
|
|
|
|
a_int = to_int(score_a) |
|
|
b_int = to_int(score_b) |
|
|
|
|
|
|
|
|
if radio_choice == "Model A is better.": |
|
|
|
|
|
if a_int is not None and b_int is not None: |
|
|
|
|
|
if a_int < b_int: |
|
|
|
|
|
upd_A = gr.update(choices=base_choices, value=None) |
|
|
upd_B = gr.update(choices=base_choices, value=None) |
|
|
else: |
|
|
|
|
|
allowed_a_choices = [choice for choice in base_choices if to_int( |
|
|
choice) is None or to_int(choice) >= b_int] |
|
|
allowed_b_choices = [choice for choice in base_choices if to_int( |
|
|
choice) is None or to_int(choice) <= a_int] |
|
|
upd_A = gr.update( |
|
|
choices=allowed_a_choices, value=score_a if score_a in allowed_a_choices else None) |
|
|
upd_B = gr.update( |
|
|
choices=allowed_b_choices, value=score_b if score_b in allowed_b_choices else None) |
|
|
elif a_int is not None: |
|
|
|
|
|
allowed_b_choices = [choice for choice in base_choices if to_int( |
|
|
choice) is None or to_int(choice) <= a_int] |
|
|
upd_B = gr.update( |
|
|
choices=allowed_b_choices, value=score_b if score_b in allowed_b_choices else None) |
|
|
elif b_int is not None: |
|
|
|
|
|
allowed_a_choices = [choice for choice in base_choices if to_int( |
|
|
choice) is None or to_int(choice) >= b_int] |
|
|
upd_A = gr.update( |
|
|
choices=allowed_a_choices, value=score_a if score_a in allowed_a_choices else None) |
|
|
|
|
|
|
|
|
elif radio_choice == "Model B is better.": |
|
|
|
|
|
if a_int is not None and b_int is not None: |
|
|
|
|
|
if b_int < a_int: |
|
|
|
|
|
upd_A = gr.update(choices=base_choices, value=None) |
|
|
upd_B = gr.update(choices=base_choices, value=None) |
|
|
else: |
|
|
|
|
|
allowed_a_choices = [choice for choice in base_choices if to_int( |
|
|
choice) is None or to_int(choice) <= b_int] |
|
|
allowed_b_choices = [choice for choice in base_choices if to_int( |
|
|
choice) is None or to_int(choice) >= a_int] |
|
|
upd_A = gr.update( |
|
|
choices=allowed_a_choices, value=score_a if score_a in allowed_a_choices else None) |
|
|
upd_B = gr.update( |
|
|
choices=allowed_b_choices, value=score_b if score_b in allowed_b_choices else None) |
|
|
elif a_int is not None: |
|
|
|
|
|
allowed_b_choices = [choice for choice in base_choices if to_int( |
|
|
choice) is None or to_int(choice) >= a_int] |
|
|
upd_B = gr.update( |
|
|
choices=allowed_b_choices, value=score_b if score_b in allowed_b_choices else None) |
|
|
elif b_int is not None: |
|
|
|
|
|
allowed_a_choices = [choice for choice in base_choices if to_int( |
|
|
choice) is None or to_int(choice) <= b_int] |
|
|
upd_A = gr.update( |
|
|
choices=allowed_a_choices, value=score_a if score_a in allowed_a_choices else None) |
|
|
|
|
|
elif radio_choice == "Both models are equally good.": |
|
|
|
|
|
if a_int is not None and b_int is not None: |
|
|
|
|
|
if a_int == b_int: |
|
|
|
|
|
upd_A = gr.update(choices=[score_a], value=score_a) |
|
|
upd_B = gr.update(choices=[score_b], value=score_b) |
|
|
else: |
|
|
|
|
|
upd_A = gr.update(choices=base_choices, value=None) |
|
|
upd_B = gr.update(choices=base_choices, value=None) |
|
|
elif a_int is not None: |
|
|
|
|
|
upd_B = gr.update(choices=[score_a], value=score_a) |
|
|
elif b_int is not None: |
|
|
|
|
|
upd_A = gr.update(choices=[score_b], value=score_b) |
|
|
elif score_a == "Unable to Judge." and score_b == "Unable to Judge.": |
|
|
|
|
|
upd_A = gr.update( |
|
|
choices=["Unable to Judge."], value="Unable to Judge.") |
|
|
upd_B = gr.update( |
|
|
choices=["Unable to Judge."], value="Unable to Judge.") |
|
|
elif score_a == "Unable to Judge.": |
|
|
|
|
|
upd_B = gr.update( |
|
|
choices=["Unable to Judge."], value="Unable to Judge.") |
|
|
elif score_b == "Unable to Judge.": |
|
|
|
|
|
upd_A = gr.update( |
|
|
choices=["Unable to Judge."], value="Unable to Judge.") |
|
|
|
|
|
|
|
|
return upd_A, upd_B |
|
|
return restrict_choices_page1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_row_dict(data_subset_state, user_info, pairwise, comparisons_reasons, nonsense_btn_clicked, *args): |
|
|
num_criteria = len(criteria) |
|
|
ratings_A_vals = list(args[:num_criteria]) |
|
|
ratings_B_vals = list(args[num_criteria:]) |
|
|
|
|
|
prompt_text = data_subset_state['question'] |
|
|
response_A_model = data_subset_state['models'][0]['model'] |
|
|
response_B_model = data_subset_state['models'][1]['model'] |
|
|
|
|
|
timestamp = datetime.datetime.now().isoformat() |
|
|
row = { |
|
|
"Timestamp": timestamp, |
|
|
"Name": user_info[0], |
|
|
"Email": user_info[1], |
|
|
"Specialty": str(user_info[2]), |
|
|
"Subspecialty": str(user_info[3]), |
|
|
"Years of Experience": user_info[4], |
|
|
"Experience Explanation": user_info[5], |
|
|
"NPI ID": user_info[6], |
|
|
"Question ID": user_info[7], |
|
|
"Prompt": prompt_text, |
|
|
"ResponseA_Model": response_A_model, |
|
|
"ResponseB_Model": response_B_model, |
|
|
"Question Makes No Sense or Biomedically Irrelevant": nonsense_btn_clicked, |
|
|
} |
|
|
|
|
|
pairwise = [mapping.get(val, val) for val in pairwise] |
|
|
for i, crit in enumerate(criteria): |
|
|
label = crit['label'] |
|
|
row[f"Criterion_{label} Comparison: Which is Better?"] = pairwise[i] |
|
|
row[f"Criterion_{label} Comments"] = comparisons_reasons[i] |
|
|
row[f"ScoreA_{label}"] = ratings_A_vals[i] |
|
|
row[f"ScoreB_{label}"] = ratings_B_vals[i] |
|
|
|
|
|
return row |
|
|
|
|
|
|
|
|
def final_submit(data_subset_state, user_info, pairwise, comparisons_reasons, nonsense_btn_clicked, *args): |
|
|
|
|
|
row_dict = build_row_dict(data_subset_state, user_info, |
|
|
pairwise, comparisons_reasons, nonsense_btn_clicked, *args) |
|
|
append_to_sheet(user_data=None, custom_row_dict=row_dict, custom_sheet_name=str( |
|
|
TXAGENT_RESULTS_SHEET_BASE_NAME), add_header_when_create_sheet=True) |
|
|
|
|
|
|
|
|
name, email, specialty, subspecialty, years_exp_radio, exp_explanation_tb, npi_id, _ = user_info |
|
|
user_info_new, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, page1_reference_answer, question_for_eval, remaining_count = get_next_eval_question( |
|
|
name, email, specialty, subspecialty, years_exp_radio, exp_explanation_tb, npi_id, our_methods |
|
|
) |
|
|
|
|
|
if remaining_count == 0: |
|
|
return ( |
|
|
"", |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=True), |
|
|
"", |
|
|
None, |
|
|
None, |
|
|
None, |
|
|
None, |
|
|
None, |
|
|
None, |
|
|
user_info_new, |
|
|
) |
|
|
return ( |
|
|
"", |
|
|
gr.update(visible=True), |
|
|
gr.update(visible=False), |
|
|
"", |
|
|
chat_a_answer, |
|
|
chat_b_answer, |
|
|
chat_a_reasoning, |
|
|
chat_b_reasoning, |
|
|
page1_prompt, |
|
|
question_for_eval, |
|
|
user_info_new |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
def validate_and_submit_page1(data_subset_state, user_info, *combined_values): |
|
|
|
|
|
criteria_count = len(criteria_for_comparison) |
|
|
pairwise_list = list(combined_values[:criteria_count]) |
|
|
comparison_reasons_list = list( |
|
|
combined_values[criteria_count:criteria_count*2]) |
|
|
ratings_A_list = list( |
|
|
combined_values[criteria_count*2:criteria_count*3]) |
|
|
ratings_B_list = list(combined_values[criteria_count*3:]) |
|
|
|
|
|
|
|
|
if any(answer is None for answer in pairwise_list): |
|
|
missing_comparisons = [] |
|
|
for i, answer in enumerate(pairwise_list): |
|
|
if answer is None: |
|
|
missing_comparisons.append(criteria_for_comparison[i]['label']) |
|
|
|
|
|
missing_text = ", ".join(missing_comparisons) |
|
|
error_msg = f"Please select an option for the following pairwise comparison(s): {missing_text}" |
|
|
gr.Info(error_msg) |
|
|
return ( |
|
|
gr.update(value=f"Error: {error_msg}"), |
|
|
gr.update(visible=True), |
|
|
gr.update(visible=False), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
|
|
|
*combined_values |
|
|
) |
|
|
|
|
|
|
|
|
if any(r is None for r in ratings_A_list) or any(r is None for r in ratings_B_list): |
|
|
missing_ratings = [] |
|
|
for i in range(len(criteria)): |
|
|
missing_parts = [] |
|
|
if ratings_A_list[i] is None: |
|
|
missing_parts.append("Response A") |
|
|
if ratings_B_list[i] is None: |
|
|
missing_parts.append("Response B") |
|
|
if missing_parts: |
|
|
missing_ratings.append( |
|
|
f"{criteria[i]['label']} ({', '.join(missing_parts)})") |
|
|
|
|
|
missing_text = "; ".join(missing_ratings) |
|
|
error_msg = f"Please provide ratings for: {missing_text}" |
|
|
gr.Info(error_msg) |
|
|
return ( |
|
|
gr.update(value=f"Error: {error_msg}"), |
|
|
gr.update(visible=True), |
|
|
gr.update(visible=False), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
gr.update(), |
|
|
|
|
|
*combined_values |
|
|
) |
|
|
gr.Info("Submitting your evaluation and loading the next question...") |
|
|
|
|
|
submit_result = final_submit(data_subset_state, user_info, pairwise_list, |
|
|
comparison_reasons_list, False, *ratings_A_list, *ratings_B_list) |
|
|
|
|
|
|
|
|
|
|
|
page1_update = submit_result[1] |
|
|
page1_visible = page1_update.get('visible', False) if isinstance( |
|
|
page1_update, dict) else False |
|
|
gr.Info(f"Your evaluation has been submitted. You are about to evaluate the next question...") |
|
|
|
|
|
if page1_visible: |
|
|
|
|
|
reset_values = [] |
|
|
for _ in range(len(combined_values)): |
|
|
reset_values.append(None) |
|
|
return submit_result + tuple(reset_values) |
|
|
else: |
|
|
|
|
|
return submit_result + tuple(combined_values) |
|
|
|
|
|
|
|
|
centered_col_css = """ |
|
|
#centered-column { |
|
|
margin-left: auto; |
|
|
margin-right: auto; |
|
|
max-width: 800px; /* Adjust this width as desired */ |
|
|
width: 100%; |
|
|
} |
|
|
#participate-btn { |
|
|
background-color: purple !important; |
|
|
color: white !important; |
|
|
border-color: purple !important; |
|
|
} |
|
|
#answer-reference-btn { |
|
|
/* Light‑mode palette */ |
|
|
--btn-bg: #E0F2FF; /* soft pastel blue */ |
|
|
--btn-text: #00334D; /* dark slate for good contrast */ |
|
|
--btn-border: #E0F2FF; |
|
|
|
|
|
background-color: var(--btn-bg) !important; |
|
|
color: var(--btn-text) !important; |
|
|
border: 1px solid var(--btn-border) !important; |
|
|
} |
|
|
|
|
|
/* Dark‑mode overrides */ |
|
|
@media (prefers-color-scheme: dark) { |
|
|
#answer-reference-btn { |
|
|
--btn-bg: #2C6E98; /* muted steel blue for dark backgrounds */ |
|
|
--btn-text: #FFFFFF; /* switch to white text for contrast */ |
|
|
--btn-border: #2C6E98; |
|
|
} |
|
|
} |
|
|
|
|
|
#clear_btn { |
|
|
background-color: #F08080 !important; |
|
|
color: white !important; |
|
|
border-color: #F08080 !important; |
|
|
} |
|
|
.reference-box { |
|
|
border: 1px solid #ccc; |
|
|
padding: 10px; |
|
|
border-radius: 5px; |
|
|
} |
|
|
.short-btn { min-width: 80px !important; max-width: 120px !important; width: 100px !important; padding-left: 4px !important; padding-right: 4px !important; } |
|
|
.light-stop-btn { background-color: #ffcccc !important; color: #b30000 !important; border-color: #ffcccc !important; } |
|
|
|
|
|
/* --- Added for larger criteria font --- */ |
|
|
.criteria-font-large { |
|
|
font-size: 1.2em !important; |
|
|
} |
|
|
/* Radio component labels (the title above the choices) */ |
|
|
.criteria-radio-label label[data-testid="block-label"] { |
|
|
font-weight: bold !important; |
|
|
font-size: 1.1em !important; |
|
|
} |
|
|
/* Textbox labels */ |
|
|
.textbox-bold-label label[data-testid="block-label"] { |
|
|
font-weight: bold !important; |
|
|
} |
|
|
#participate-btn button { |
|
|
font-size: 24px !important; /* Large readable text */ |
|
|
font-weight: 700 !important; /* Bold for emphasis */ |
|
|
padding: 28px 40px !important; /* Extra padding for height */ |
|
|
min-height: 120px !important; /* Make button visibly taller (multi‑line) */ |
|
|
width: 100% !important; /* Occupy full width of its column */ |
|
|
white-space: normal !important; /* Allow text to wrap onto multiple lines */ |
|
|
} |
|
|
.criteria-radio-score-label [role="radiogroup"], |
|
|
.criteria-radio-score-label .gr-radio-group, |
|
|
.criteria-radio-score-label .flex { |
|
|
display: flex !important; |
|
|
flex-direction: column !important; |
|
|
gap: 4px !important; /* 行间距,可按需调整 */ |
|
|
} |
|
|
|
|
|
/* 更具体的选择器来确保垂直布局 */ |
|
|
.criteria-radio-score-label fieldset { |
|
|
display: flex !important; |
|
|
flex-direction: column !important; |
|
|
gap: 4px !important; |
|
|
} |
|
|
|
|
|
.criteria-radio-score-label .wrap { |
|
|
display: flex !important; |
|
|
flex-direction: column !important; |
|
|
gap: 4px !important; |
|
|
} |
|
|
|
|
|
/* 确保每个单选按钮选项垂直排列 */ |
|
|
.criteria-radio-score-label label { |
|
|
display: block !important; |
|
|
margin-bottom: 4px !important; |
|
|
} |
|
|
""" |
|
|
with gr.Blocks(css=centered_col_css) as demo: |
|
|
|
|
|
user_info_state = gr.State() |
|
|
pairwise_state = gr.State() |
|
|
scores_A_state = gr.State() |
|
|
comparison_reasons = gr.State() |
|
|
nonsense_btn_clicked = gr.State(False) |
|
|
unqualified_A_state = gr.State() |
|
|
data_subset_state = gr.State() |
|
|
question_in_progress = gr.State(0) |
|
|
|
|
|
|
|
|
specialties_path = "specialties.json" |
|
|
subspecialties_path = "subspecialties.json" |
|
|
|
|
|
try: |
|
|
with open(specialties_path, 'r') as f: |
|
|
specialties_list = json.load(f) |
|
|
with open(subspecialties_path, 'r') as f: |
|
|
subspecialties_list = json.load(f) |
|
|
except FileNotFoundError: |
|
|
print( |
|
|
f"Error: Could not find specialty files at {specialties_path} or {subspecialties_path}. Please ensure these files exist.") |
|
|
|
|
|
specialties_list = ["Error loading specialties"] |
|
|
subspecialties_list = ["Error loading subspecialties"] |
|
|
except json.JSONDecodeError: |
|
|
print(f"Error: Could not parse JSON from specialty files.") |
|
|
specialties_list = ["Error parsing specialties"] |
|
|
subspecialties_list = ["Error parsing subspecialties"] |
|
|
|
|
|
|
|
|
with gr.Column(visible=True, elem_id="page-1") as page_minus1: |
|
|
gr.HTML(""" |
|
|
<div> |
|
|
<h1>TxAgent Evaluation Portal</h1> |
|
|
</div> |
|
|
""") |
|
|
|
|
|
|
|
|
with gr.Column(scale=1): |
|
|
participate_eval_btn = gr.Button( |
|
|
value="Evaluate TxAgent", |
|
|
variant="primary", |
|
|
size="lg", |
|
|
elem_id="participate-btn" |
|
|
) |
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown( |
|
|
""" |
|
|
Joining the **Evaluate TxAgent**, you will: |
|
|
- See how the model responds to a variety of prompts. |
|
|
- Provide instant thumbs-up / thumbs-down ratings. |
|
|
- Shape the roadmap for upcoming releases. |
|
|
|
|
|
_Thank you for helping us improve!_ |
|
|
""" |
|
|
) |
|
|
with gr.Column(scale=1): |
|
|
submit_questions_btn = gr.Button( |
|
|
value="Submit Therapeutic Questions", |
|
|
variant="primary", |
|
|
size="lg", |
|
|
elem_id="submit-btn" |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown( |
|
|
""" |
|
|
By submitting **Submit Therapeutic Questions**, you will: |
|
|
- Highlight edge-cases and identify blind spots. |
|
|
- Push TxAgent to reason in new domains. |
|
|
- Directly influence future model improvements. |
|
|
|
|
|
_We're excited to see what you come up with!_ |
|
|
""" |
|
|
) |
|
|
|
|
|
|
|
|
contact_info_markdown = """ |
|
|
## Contact |
|
|
|
|
|
If you have any questions or suggestions, please email [Shanghua Gao](mailto:[email protected]) and [Marinka Zitnik](mailto:[email protected]). |
|
|
""" |
|
|
|
|
|
gr.Markdown(contact_info_markdown) |
|
|
|
|
|
gr.HTML(TxAgent_Project_Page_HTML) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
google_form_url = "https://forms.gle/pYvyvEQQwS5gdupQA" |
|
|
submit_questions_btn.click( |
|
|
fn=None, |
|
|
inputs=None, |
|
|
outputs=None, |
|
|
js=f"() => {{ window.open('{google_form_url}', '_blank'); }}" |
|
|
) |
|
|
|
|
|
|
|
|
with gr.Column(visible=False, elem_id="page0") as page0: |
|
|
|
|
|
gr.Markdown("## Information:") |
|
|
name = gr.Textbox(label="Name (required)") |
|
|
email = gr.Textbox( |
|
|
label="Email (required). Please use the same email every time you log onto this evaluation portal, as we use your email to prevent showing repeat questions.") |
|
|
specialty_dd = gr.Dropdown( |
|
|
choices=specialties_list, label="Primary Medical Specialty (required). Go to https://www.abms.org/member-boards/specialty-subspecialty-certificates/ for categorization)", multiselect=True) |
|
|
subspecialty_dd = gr.Dropdown( |
|
|
choices=subspecialties_list, label="Subspecialty (if applicable). Go to https://www.abms.org/member-boards/specialty-subspecialty-certificates/ for categorization)", multiselect=True) |
|
|
npi_id = gr.Textbox( |
|
|
label="National Provider Identifier ID (optional). Got to https://npiregistry.cms.hhs.gov/search to search for your NPI ID. If you do not have an NPI ID, please leave this blank.") |
|
|
years_exp_radio = gr.Radio( |
|
|
choices=["0-2 years", "3-5 years", "6-10 years", |
|
|
"11-20 years", "20+ years", "Not Applicable"], |
|
|
label="How many years have you been involved in clinical and/or research activities related to your biomedical area of expertise? (required)" |
|
|
) |
|
|
exp_explanation_tb = gr.Textbox( |
|
|
label="Please briefly explain your expertise/experience relevant to evaluating AI for clinical decision support (optional)") |
|
|
|
|
|
page0_error_box = gr.Markdown("") |
|
|
with gr.Row(): |
|
|
next_btn_0 = gr.Button("Next") |
|
|
gr.Markdown("""By clicking 'Next', you will start the study, with your progress saved after submitting each question. If you have any other questions or concerns, please contact us directly. Thank you for your participation! |
|
|
""") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Column(visible=False) as page1: |
|
|
with gr.Accordion("Instructions", open=False): |
|
|
gr.Markdown(""" |
|
|
## Instructions: |
|
|
Please review these instructions and enter your information to begin: |
|
|
|
|
|
- Each session requires at least 5-10 minutes per question. |
|
|
- You can evaluate multiple questions; you will not repeat evaluations. |
|
|
- For each question, compare responses from two models and rate them (scale: 1-5). |
|
|
- If a question is unclear or irrelevant to biomedicine, click the RED BUTTON at the top of the comparison page. |
|
|
- Use the Back and Next buttons to edit responses before submission. |
|
|
- Use the Home Page button to return to the homepage; progress will save but not submit. |
|
|
- Submit answers to the current question before moving to the next. |
|
|
- You can pause between questions and return later; ensure current answers are submitted to save them. |
|
|
""") |
|
|
|
|
|
|
|
|
|
|
|
page1_prompt = gr.HTML() |
|
|
with gr.Row(): |
|
|
nonsense_btn = gr.Button( |
|
|
"Skip Question", |
|
|
size="sm", |
|
|
variant="stop", |
|
|
elem_id="invalid-question-btn", |
|
|
elem_classes=["short-btn"], |
|
|
scale=1 |
|
|
) |
|
|
skip_comments = gr.Textbox( |
|
|
placeholder="(Optional) Why do you want to skip this question...", |
|
|
show_label=False, |
|
|
scale=3, |
|
|
container=False, |
|
|
) |
|
|
|
|
|
page1_error_box = gr.Markdown("") |
|
|
|
|
|
|
|
|
with gr.Row(): |
|
|
|
|
|
with gr.Column(): |
|
|
gr.Markdown("**Model A Response:**") |
|
|
chat_a_answer = gr.Chatbot( |
|
|
value=[], |
|
|
type="messages", |
|
|
height=200, |
|
|
label="Model A Answer", |
|
|
show_copy_button=False, |
|
|
show_label=True, |
|
|
render_markdown=True, |
|
|
avatar_images=None, |
|
|
rtl=False |
|
|
) |
|
|
|
|
|
chat_a_reasoning = gr.Chatbot( |
|
|
value=[], |
|
|
type="messages", |
|
|
height=300, |
|
|
label="Model A Reasoning - Rationale", |
|
|
show_copy_button=False, |
|
|
show_label=True, |
|
|
render_markdown=True, |
|
|
avatar_images=None, |
|
|
rtl=False |
|
|
) |
|
|
|
|
|
with gr.Column(): |
|
|
gr.Markdown("**Model B Response:**") |
|
|
chat_b_answer = gr.Chatbot( |
|
|
value=[], |
|
|
type="messages", |
|
|
height=200, |
|
|
label="Model B Answer", |
|
|
show_copy_button=False, |
|
|
show_label=True, |
|
|
render_markdown=True, |
|
|
avatar_images=None, |
|
|
rtl=False |
|
|
) |
|
|
|
|
|
chat_b_reasoning = gr.Chatbot( |
|
|
value=[], |
|
|
type="messages", |
|
|
height=300, |
|
|
label="Model B Reasoning - Rationale", |
|
|
show_copy_button=False, |
|
|
show_label=True, |
|
|
render_markdown=True, |
|
|
avatar_images=None, |
|
|
rtl=False |
|
|
) |
|
|
|
|
|
|
|
|
comparison_reasons_inputs = [] |
|
|
pairwise_inputs = [] |
|
|
ratings_A_page1 = [] |
|
|
ratings_B_page1 = [] |
|
|
|
|
|
for i, crit_comp in enumerate(criteria_for_comparison): |
|
|
|
|
|
crit_score = criteria[i] |
|
|
|
|
|
restrict_fn = make_restrict_function(sorted(crit_score["scores"])) |
|
|
|
|
|
|
|
|
gr.Markdown(f"**{crit_comp['label']}**", |
|
|
elem_classes="criteria-font-large") |
|
|
radio = gr.Radio( |
|
|
choices=[ |
|
|
"Model A is better.", |
|
|
"Model B is better.", |
|
|
"Both models are equally good.", |
|
|
"Neither model did well." |
|
|
], |
|
|
|
|
|
label=crit_comp['text'], |
|
|
elem_classes="criteria-radio-label" |
|
|
) |
|
|
pairwise_inputs.append(radio) |
|
|
|
|
|
|
|
|
|
|
|
index_component = gr.Number( |
|
|
value=i, visible=False, interactive=False) |
|
|
|
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
rating_a = gr.Radio(choices=sorted(crit_score["scores"]), |
|
|
label=f"Response A - {crit_score['text']}", |
|
|
interactive=True, |
|
|
elem_classes="criteria-radio-score-label") |
|
|
with gr.Column(scale=1): |
|
|
rating_b = gr.Radio(choices=sorted(crit_score["scores"]), |
|
|
label=f"Response B - {crit_score['text']}", |
|
|
interactive=True, |
|
|
elem_classes="criteria-radio-score-label") |
|
|
|
|
|
|
|
|
with gr.Row(): |
|
|
|
|
|
radio.change( |
|
|
fn=restrict_fn, |
|
|
inputs=[radio, rating_a, rating_b], |
|
|
outputs=[rating_a, rating_b] |
|
|
) |
|
|
rating_a.change( |
|
|
fn=restrict_fn, |
|
|
inputs=[radio, rating_a, rating_b], |
|
|
outputs=[rating_a, rating_b] |
|
|
) |
|
|
rating_b.change( |
|
|
fn=restrict_fn, |
|
|
inputs=[radio, rating_a, rating_b], |
|
|
outputs=[rating_a, rating_b] |
|
|
) |
|
|
|
|
|
ratings_A_page1.append(rating_a) |
|
|
ratings_B_page1.append(rating_b) |
|
|
|
|
|
text_input = gr.Textbox( |
|
|
|
|
|
placeholder="Comments for your selection (optional)", |
|
|
show_label=False, |
|
|
|
|
|
) |
|
|
comparison_reasons_inputs.append(text_input) |
|
|
|
|
|
with gr.Row(): |
|
|
submit_btn_1 = gr.Button( |
|
|
"Submit Evaluation", variant="primary", elem_id="submit_btn") |
|
|
|
|
|
|
|
|
with gr.Column(visible=False, elem_id="final_page") as final_page: |
|
|
gr.Markdown( |
|
|
"## You have no questions left to evaluate. Thank you for your participation!") |
|
|
|
|
|
|
|
|
with Modal("Error", visible=False, elem_id="error_modal") as error_modal: |
|
|
error_message_box = gr.Markdown() |
|
|
ok_btn = gr.Button("OK") |
|
|
|
|
|
ok_btn.click(lambda: gr.update(visible=False), None, error_modal) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
participate_eval_btn.click( |
|
|
fn=go_to_page0_from_minus1, |
|
|
inputs=[question_in_progress], |
|
|
|
|
|
outputs=[page_minus1, page0, page1, final_page] |
|
|
) |
|
|
|
|
|
|
|
|
next_btn_0.click( |
|
|
fn=go_to_eval_progress_modal, |
|
|
inputs=[name, email, specialty_dd, subspecialty_dd, |
|
|
years_exp_radio, exp_explanation_tb, npi_id], |
|
|
outputs=[page0, page1, user_info_state, page0_error_box, chat_a_answer, |
|
|
chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, data_subset_state], |
|
|
scroll_to_output=True |
|
|
) |
|
|
|
|
|
nonsense_btn.click( |
|
|
fn=flag_nonsense_and_skip, |
|
|
inputs=[user_info_state, skip_comments], |
|
|
outputs=[user_info_state, page1_error_box, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, |
|
|
page1_prompt, data_subset_state], |
|
|
scroll_to_output=True |
|
|
) |
|
|
|
|
|
|
|
|
submit_btn_1.click( |
|
|
fn=validate_and_submit_page1, |
|
|
inputs=[data_subset_state, user_info_state, *pairwise_inputs, |
|
|
*comparison_reasons_inputs, *ratings_A_page1, *ratings_B_page1], |
|
|
outputs=[page1_error_box, page1, final_page, page0_error_box, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, |
|
|
page1_prompt, data_subset_state, user_info_state, *pairwise_inputs, *comparison_reasons_inputs, *ratings_A_page1, *ratings_B_page1], |
|
|
scroll_to_output=True |
|
|
) |
|
|
|
|
|
|
|
|
demo.launch(share=True, allowed_paths=["."]) |
|
|
|