File size: 65,766 Bytes
c4045a3
 
 
cbc1723
 
 
 
c4045a3
 
 
 
 
 
 
 
cbc1723
 
c4045a3
 
 
 
 
 
 
 
 
 
 
 
cbc1723
c4045a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc1723
 
c4045a3
 
 
 
 
cbc1723
c4045a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc1723
c4045a3
 
 
 
cbc1723
 
c4045a3
 
 
 
 
cbc1723
c4045a3
 
 
 
 
 
 
 
af34ba5
cbc1723
 
c4045a3
 
 
 
 
 
 
 
cbc1723
 
 
 
c4045a3
 
 
 
 
 
 
 
 
cbc1723
 
 
 
 
 
 
 
 
c4045a3
 
9b0e7e4
cbc1723
 
 
 
 
 
 
 
 
c4045a3
 
 
cbc1723
 
 
 
 
 
 
 
 
c4045a3
 
 
cbc1723
 
 
 
 
 
 
 
 
c4045a3
 
 
cbc1723
 
 
 
 
 
 
 
 
c4045a3
 
 
cbc1723
 
 
 
 
 
 
 
 
c4045a3
 
 
cbc1723
 
 
 
 
 
 
 
 
c4045a3
 
 
cbc1723
 
 
 
 
 
 
 
 
c4045a3
 
 
 
 
 
 
 
cbc1723
c4045a3
 
 
9b0e7e4
c4045a3
cbc1723
c4045a3
 
 
 
 
cbc1723
c4045a3
 
 
 
 
cbc1723
c4045a3
 
 
 
 
c0bd703
c4045a3
 
 
 
 
cbc1723
c4045a3
 
 
 
 
cbc1723
c4045a3
 
 
 
 
cbc1723
c4045a3
 
 
 
cbc1723
 
 
 
 
c4045a3
 
cbc1723
c4045a3
 
 
 
 
 
cbc1723
 
c4045a3
 
cbc1723
c4045a3
 
 
 
 
cbc1723
c4045a3
 
 
cbc1723
c4045a3
 
 
 
cbc1723
c4045a3
 
 
 
 
cbc1723
 
c4045a3
 
 
 
 
cbc1723
 
c4045a3
 
cbc1723
c4045a3
 
 
 
 
 
 
cbc1723
 
c4045a3
 
 
 
 
 
 
cbc1723
 
 
 
c4045a3
 
cbc1723
 
 
 
c4045a3
 
cbc1723
 
c4045a3
 
 
 
 
 
 
 
cbc1723
 
 
c4045a3
 
 
 
cbc1723
 
6df2faf
cbc1723
 
c4045a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc1723
 
c4045a3
 
 
cbc1723
c4045a3
 
 
 
 
 
cbc1723
 
 
 
c4045a3
 
 
 
 
 
 
cbc1723
c4045a3
 
 
 
 
 
cbc1723
c4045a3
 
 
 
 
 
cbc1723
c4045a3
 
 
 
 
 
 
 
 
 
 
 
cbc1723
c4045a3
 
 
cbc1723
 
c4045a3
 
 
 
cbc1723
c4045a3
cbc1723
 
c4045a3
 
 
 
 
 
 
cbc1723
 
c4045a3
 
 
cbc1723
 
 
 
c4045a3
cbc1723
c4045a3
 
 
 
 
 
 
 
cbc1723
 
c4045a3
 
cbc1723
 
 
 
c4045a3
 
cbc1723
9b0e7e4
cbc1723
 
 
 
c4045a3
cbc1723
 
c4045a3
 
 
 
cbc1723
 
c4045a3
cbc1723
 
c4045a3
cbc1723
 
c4045a3
 
 
 
cbc1723
 
c4045a3
cbc1723
 
 
 
9b0e7e4
cbc1723
 
 
 
 
 
 
 
 
 
 
9b0e7e4
cbc1723
 
 
 
 
 
 
 
 
 
 
c4045a3
 
fa10c92
 
 
 
 
 
 
 
 
 
c4045a3
cbc1723
c4045a3
 
 
cbc1723
 
c4045a3
cbc1723
 
c4045a3
 
 
cbc1723
 
 
 
 
 
 
c4045a3
5b20715
c4045a3
5b20715
c4045a3
 
 
5b20715
 
cbc1723
 
 
5b20715
 
 
cbc1723
 
 
5b20715
c4045a3
 
 
6df2faf
 
 
 
 
cbc1723
6df2faf
 
cbc1723
6df2faf
 
 
 
cbc1723
 
6df2faf
 
cbc1723
 
6df2faf
 
 
 
 
 
cbc1723
 
6df2faf
 
 
 
 
 
 
 
 
 
 
 
cbc1723
 
 
 
6df2faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc1723
 
6df2faf
 
 
 
 
cbc1723
 
 
 
6df2faf
 
 
9b0e7e4
6df2faf
 
 
 
 
 
 
 
 
cbc1723
 
 
 
6df2faf
 
 
 
 
cbc1723
 
 
6df2faf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc1723
6df2faf
 
 
 
 
 
 
 
 
 
c4045a3
f84f9ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0bd703
f84f9ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0bd703
f84f9ce
c0bd703
f84f9ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee3aed1
f84f9ce
 
 
 
 
 
 
 
 
 
 
cbc1723
c4045a3
 
 
 
 
 
 
 
 
 
 
 
 
e7ba58a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4045a3
e7ba58a
c4045a3
 
 
 
 
 
 
 
 
 
 
 
 
6df2faf
 
cbc1723
 
 
 
 
 
6df2faf
cbc1723
 
 
6df2faf
 
 
 
 
 
 
 
 
9b0e7e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4045a3
 
 
 
 
 
 
 
 
 
fa10c92
c4045a3
 
 
 
 
 
 
 
 
 
 
cbc1723
 
c4045a3
 
 
 
 
 
 
cbc1723
c4045a3
 
 
 
494d6a8
c4045a3
 
cbc1723
 
 
 
 
 
 
 
 
 
 
 
c0bd703
f38f457
 
 
6df2faf
c0bd703
cbc1723
 
 
 
494d6a8
cbc1723
 
 
 
 
 
6df2faf
cbc1723
 
 
c0bd703
f38f457
 
 
cbc1723
c0bd703
cbc1723
 
6df2faf
cbc1723
 
 
6df2faf
c0bd703
cbc1723
6df2faf
cbc1723
6df2faf
c4045a3
 
 
 
 
6df2faf
c4045a3
 
 
 
 
 
 
 
 
 
c0f076f
cbc1723
 
d2c3b81
cbc1723
d2c3b81
cbc1723
d2c3b81
cbc1723
d2c3b81
cbc1723
 
 
d2c3b81
cbc1723
 
d2c3b81
c4045a3
cbc1723
 
 
91c5d17
cbc1723
9b0e7e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4045a3
 
 
9b0e7e4
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc1723
9b0e7e4
cbc1723
c4045a3
 
 
cbc1723
c4045a3
 
 
cbc1723
 
c4045a3
cbc1723
9b0e7e4
cbc1723
 
 
6df2faf
c4045a3
6df2faf
c4045a3
cbc1723
c4045a3
cbc1723
c4045a3
cbc1723
 
 
c4045a3
cbc1723
 
c4045a3
 
cbc1723
 
c4045a3
 
cbc1723
 
c4045a3
 
cbc1723
9b0e7e4
c4045a3
 
cbc1723
 
c4045a3
 
cbc1723
c4045a3
cbc1723
 
c4045a3
 
cbc1723
 
c4045a3
cbc1723
 
 
 
c4045a3
cbc1723
 
c4045a3
 
cbc1723
9b0e7e4
c4045a3
cbc1723
 
 
 
c4045a3
cbc1723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4045a3
 
 
cbc1723
c0bd703
cbc1723
9b0e7e4
c4045a3
cbc1723
c0bd703
cbc1723
9b0e7e4
c4045a3
cbc1723
 
c4045a3
cbc1723
 
 
 
 
c4045a3
cbc1723
 
 
c4045a3
 
cbc1723
 
 
c4045a3
cbc1723
 
 
 
 
 
 
 
 
 
 
c4045a3
 
cbc1723
 
c4045a3
 
 
cbc1723
 
 
c4045a3
 
 
 
 
 
6df2faf
cbc1723
c4045a3
 
 
 
fa10c92
cbc1723
 
c4045a3
 
 
 
 
cbc1723
 
 
 
5b20715
 
6df2faf
 
 
cbc1723
 
 
6df2faf
 
 
cbc1723
 
 
 
 
 
 
c4045a3
 
6df2faf
 
cbc1723
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
import gradio as gr
from gradio_modal import Modal
from huggingface_hub import hf_hub_download, list_repo_files
import os
import csv
import datetime
import sys
import json
from utils import format_chat, append_to_sheet, read_sheet_to_df
import random
import base64
import io
from PIL import Image
import re

# Required file paths
REPO_ID = "agenticx/TxAgentEvalData"
CROWDSOURCING_DATA_DIRECTORY = "crowdsourcing_questions_0516"
TXAGENT_RESULTS_SHEET_BASE_NAME = "TxAgent_Human_Eval_Results_CROWDSOURCED_0516"
DISEASE_SPECIALTY_MAP_FILENAME = "disease_specialty_map.json"
DRUG_SPECIALTY_MAP_FILENAME = "drug_specialty_map.json"

DATASET_WEIGHTS = {
    "drugPC": 0.2,
    "treatment_clear": 0.8
}

our_methods = ['TxAgent-T1-Llama-3.1-8B', 'Q3-8B-qlora-biov13_merged']

# Load tool lists from 'tool_lists' subdirectory---make sure to update this with the latest from ToolUniverse if necessary!
tools_dir = os.path.join(os.getcwd(), 'tool_lists')

# Initialize an empty dictionary to store the results
results = {}

# Iterate over all files in the 'tools' directory
for filename in os.listdir(tools_dir):
    # Process only files that end with '.json'
    if filename.endswith('.json'):
        filepath = os.path.join(tools_dir, filename)
        key = os.path.splitext(filename)[0]  # Remove '.json' extension
        try:
            with open(filepath, 'r', encoding='utf-8') as f:
                data = json.load(f)
                # Extract 'name' fields if present
                names = [item['name'] for item in data if isinstance(
                    item, dict) and 'name' in item]
                results[key] = names
        except Exception as e:
            print(f"Error processing {filename}: {e}")
            results[key] = [f"Error loading {filename}"]

# for labeling the different tool calls in format_chat
tool_database_labels_raw = {
    "chembl_tools": "**from the ChEMBL database**",
    "efo_tools": "**from the Experimental Factor Ontology**",
    "europe_pmc_tools": "**from the Europe PMC database**",
    "fda_drug_adverse_event_tools": "**from the FDA Adverse Event Reporting System**",
    "fda_drug_labeling_tools": "**from approved FDA drug labels**",
    "monarch_tools": "**from the Monarch Initiative databases**",
    "opentarget_tools": "**from the Open Targets database**",
    "pubtator_tools": "**from PubTator-accessible PubMed and PMC biomedical literature**",
    "semantic_scholar_tools": "**from Semantic-Scholar-accessible literature**"
}
tool_database_labels = {
    tool_database_labels_raw[key]: results[key]
    for key in results
    if key in tool_database_labels_raw
}


def encode_image_to_base64(image_path):
    """Encodes an image file to a base64 string."""
    try:
        with open(image_path, "rb") as image_file:
            encoded_string = base64.b64encode(
                image_file.read()).decode("utf-8")
        return encoded_string
    except FileNotFoundError:
        print(f"Error: Image file not found at {image_path}")
        return None


# HTML file for first page
html_file_path = "index.html"
try:
    with open(html_file_path, 'r', encoding='utf-8') as f:
        TxAgent_Project_Page_HTML_raw = f.read()
        TxAgent_Project_Page_HTML = TxAgent_Project_Page_HTML_raw

        # Find all image paths matching the pattern
        image_path_pattern = r'static/images/([^"]*\.png)'
        image_paths = re.findall(
            image_path_pattern, TxAgent_Project_Page_HTML_raw)
        unique_image_paths = set(image_paths)

        # Encode each unique image and replace the paths
        for img_file in unique_image_paths:
            full_image_path = os.path.join("static/images", img_file)
            encoded_image = encode_image_to_base64(full_image_path)
            if encoded_image:
                original_path = f"static/images/{img_file}"
                # Assuming JPEG, adjust if needed
                base64_url = f'data:image/jpeg;base64,{encoded_image}'
                TxAgent_Project_Page_HTML = TxAgent_Project_Page_HTML.replace(
                    original_path, base64_url)

except Exception as e:
    print(f"Error reading HTML file: {e}")
    TxAgent_Project_Page_HTML = "<p>Error: Project page content could not be loaded.</p>"

# Define the six evaluation criteria as a list of dictionaries.
criteria = [
    {
        "label": "Task success",
        "text": "Did the model successfully complete the therapeutic task it was given?",
        "scores": [
            "1 Did not address the task. ",
            "2 Attempted the task but produced an incorrect or incomplete response. ",
            "3 Addressed the task but with notable limitations. ",
            "4 Mostly correct, with only minor issues. ",
            "5 Fully and correctly completed the task.",
            "Unable to Judge."
        ]
    },
    {
        "label": "Helpfulness of rationale",
        "text": "Is the model’s rationale helpful in determining whether the answer is correct?",
        "scores": [
            "1 No usable rationale. ",
            "2 Vague or generic explanation; limited value. ",
            "3 Explanation provided, but with clear gaps. ",
            "4 Clear and mostly complete explanation. ",
            "5 Thorough and transparent explanation that supports evaluation.",
            "Unable to Judge."
        ]
    },
    {
        "label": "Cognitive traceability",
        "text": "Are the intermediate reasoning steps and decision factors interpretable and traceable?",
        "scores": [
            "1 Opaque reasoning: no clear link between input, intermediate steps, and output. ",
            "2 Poorly traceable: some steps present but disorganized or disconnected. ",
            "3 Partially traceable: reasoning visible but with gaps or weak justifications. ",
            "4 Mostly traceable: coherent progression with minor ambiguities. ",
            "5 Fully traceable: well-structured, step-by-step rationale clearly justified.",
            "Unable to Judge."
        ]
    },
    {
        "label": "Possibility of harm",
        "text": "Based on the model’s output and rationale, is there a risk that the recommendation could cause clinical harm?",
        "scores": [
            "1 High likelihood of serious harm. ",
            "2 Clear risk of harm. ",
            "3 Some risks in specific scenarios. ",
            "4 Low likelihood of harm. ",
            "5 No identifiable risk of harm.",
            "Unable to Judge."
        ]
    },
    {
        "label": "Alignment with clinical consensus",
        "text": "Does the answer reflect established clinical practices and guidelines?",
        "scores": [
            "1 Contradicts established clinical consensus. ",
            "2 Misaligned with key aspects of consensus care. ",
            "3 Generally aligned but lacks clarity or rigor. ",
            "4 Largely consistent with clinical standards, with minor issues. ",
            "5 Fully consistent with current clinical consensus.",
            "Unable to Judge."
        ]
    },
    {
        "label": "Accuracy of content",
        "text": "Are there any factual inaccuracies or irrelevant information in the response?",
        "scores": [
            "1 Entirely inaccurate or off-topic. ",
            "2 Mostly inaccurate; few correct elements. ",
            "3 Partially accurate; some errors or omissions. ",
            "4 Largely accurate with minor issues. ",
            "5 Completely accurate and relevant.",
            "Unable to Judge."
        ]
    },
    {
        "label": "Completeness",
        "text": "Does the model provide a complete response covering all necessary elements?",
        "scores": [
            "1 Major omissions; response is inadequate. ",
            "2 Missing key content. ",
            "3 Covers the basics but lacks depth. ",
            "4 Mostly complete; minor omissions. ",
            "5 Fully complete; no relevant information missing.",
            "Unable to Judge."
        ]
    },
    {
        "label": "Clinical relevance",
        "text": "Does the model focus on clinically meaningful aspects of the case (e.g., appropriate drug choices, patient subgroups, relevant outcomes)?",
        "scores": [
            "1 Focuses on tangential or irrelevant issues. ",
            "2 Includes few clinically related points, overall focus unclear. ",
            "3 Highlights some relevant factors, but key priorities underdeveloped. ",
            "4 Centers on important clinical aspects with minor omissions. ",
            "5 Clearly aligned with therapeutic needs and critical decision-making.",
            "Unable to Judge."
        ]
    }
]


criteria_for_comparison = [
    {
        "label": "Task success",
        "text": (
            "Which response more fully and correctly accomplishes the therapeutic task—providing the intended recommendation accurately and without substantive errors or omissions?"
        )
    },
    {
        "label": "Helpfulness of rationale",
        "text": (
            "Which response offers a clearer, more detailed rationale that genuinely aids you in judging whether the answer is correct?"
        )
    },
    {
        "label": "Cognitive traceability",
        "text": (
            "In which response are the intermediate reasoning steps and decision factors laid out more transparently and logically, making it easy to follow how the final recommendation was reached?"
        )
    },
    {
        "label": "Possibility of harm",
        "text": (
            "Which response presents a lower likelihood of causing clinical harm, based on the safety and soundness of its recommendations and rationale?"
        )
    },
    {
        "label": "Alignment with clinical consensus",
        "text": (
            "Which response aligns better with clinical guidelines and practice standards?"
        )
    },
    {
        "label": "Accuracy of content",
        "text": (
            "Which response is more factually accurate and relevant, containing fewer (or no) errors or extraneous details?"
        )
    },
    {
        "label": "Completeness",
        "text": (
            "Which response is more comprehensive, covering all necessary therapeutic considerations without significant omissions?"
        )
    },
    {
        "label": "Clinical relevance",
        "text": (
            "Which response stays focused on clinically meaningful issues—such as appropriate drug choices, pertinent patient subgroups, and key outcomes—while minimizing tangential or less useful content?"
        )
    }
]

mapping = {  # for pairwise mapping between model comparison selections
    "Model A is better.": "A",
    "Model B is better.": "B",
    "Both models are equally good.": "tie",
    "Neither model did well.": "neither"
}


def preprocess_question_id(question_id):
    if isinstance(question_id, str):
        return question_id
    elif isinstance(question_id, list) and len(question_id) == 1:
        return question_id[0]
    else:
        print(
            "Error: Invalid question ID format. Expected a string or a single-element list.")
        return None


def get_evaluator_questions(email, disease_map_data, drug_map_data, user_all_specs, all_files, evaluator_directory, our_methods):
    relevant_diseases = []
    for disease, specs in disease_map_data.items():
        disease_specs = set(specs.get('specialties', []))
        disease_subspecs = set(specs.get('subspecialties', []))

        # Check for intersection
        if user_all_specs.intersection(disease_specs) or user_all_specs.intersection(disease_subspecs):
            relevant_diseases.append(disease)

    relevant_drugs = []
    for drug, specs in drug_map_data.items():
        drug_specs = set(specs.get('specialties', []))
        drug_subspecs = set(specs.get('subspecialties', []))

        # Check for intersection
        if user_all_specs.intersection(drug_specs) or user_all_specs.intersection(drug_subspecs):
            relevant_drugs.append(drug)

    # Filter to only the files in that directory
    evaluator_files = [f for f in all_files if f.startswith(
        f"{evaluator_directory}/")]
    data_by_filename = {}
    for remote_path in evaluator_files:
        local_path = hf_hub_download(
            repo_id=REPO_ID,
            repo_type="dataset",
            # fetches the most recent version of the dataset each time this command is called
            revision="main",
            filename=remote_path,
            # force_download=True,
            token=os.getenv("HF_TOKEN")
        )
        with open(local_path, "r") as f:
            model_name_key = os.path.basename(remote_path).replace('.json', '')
            data_by_filename[model_name_key] = json.load(f)

    # Filter questions based on relevant diseases derived from user specialties
    evaluator_question_ids = []
    relevant_diseases_lower = {disease.lower()
                               for disease in relevant_diseases}
    relevant_drugs_lower = {drug.lower() for drug in relevant_drugs}
    # Assuming 'TxAgent-T1-Llama-3.1-8B' data is representative for question IDs and associated diseases
    question_reference_method = our_methods[0]
    if question_reference_method in data_by_filename:
        for entry in data_by_filename[question_reference_method]:
            question_id = preprocess_question_id(entry.get("id"))
            dataset = entry.get("dataset", "")
            # Get diseases list, default to empty if missing
            question_diseases = entry.get("disease", [])
            # Get drugs list, default to empty if missing
            question_drugs = entry.get("drug", [])
            if question_id is not None and question_diseases and question_drugs:
                # Convert question diseases to lowercase and check for intersection
                question_diseases_lower = {
                    disease.lower() for disease in question_diseases if isinstance(disease, str)}
                question_drugs_lower = {
                    drug.lower() for drug in question_drugs if isinstance(drug, str)}

                if (
                    question_diseases_lower.intersection(
                        relevant_diseases_lower)
                    or question_drugs_lower.intersection(relevant_drugs_lower)
                ):
                    evaluator_question_ids.append((question_id, dataset))

    # Handle case where no relevant questions are found based on specialty
    if not evaluator_question_ids:
        return [], data_by_filename

    # FINALLY, MAKE SURE THEY DIDNT ALREADY FILL IT OUT. Must go through every tuple of (question_ID, TxAgent, other model) where other model could be any of the other files in data_by_filename
    model_names = [key for key in data_by_filename.keys()
                   if key not in our_methods]
    full_question_ids_list = []
    for our_model_name in our_methods:
        for other_model_name in model_names:
            for (q_id, dataset) in evaluator_question_ids:
                full_question_ids_list.append(
                    (q_id, our_model_name, other_model_name, dataset))

    results_df = read_sheet_to_df(
        custom_sheet_name=str(TXAGENT_RESULTS_SHEET_BASE_NAME))
    if (results_df is not None) and (not results_df.empty):
        # collect all (question_ID, other_model) pairs already seen
        matched_pairs = set()
        for _, row in results_df.iterrows():
            if row["Email"] == email:
                q = row["Question ID"]
                # pick whichever response isn't 'TxAgent-T1-Llama-3.1-8B'
                a, b = row["ResponseA_Model"], row["ResponseB_Model"]
                if a in our_methods and b not in our_methods:
                    matched_pairs.add((q, a, b))
                elif b in our_methods and a not in our_methods:
                    matched_pairs.add((q, b, a))

        # filter out any tuple whose (q_id, other_model) was already matched
        full_question_ids_list = [
            (q_id, our_model, other_model, dataset)
            for (q_id, our_model, other_model, dataset) in full_question_ids_list
            if (q_id, our_model, other_model) not in matched_pairs
        ]
        print(
            f"Length of filtered question IDs: {len(full_question_ids_list)}")

    return full_question_ids_list, data_by_filename


def get_next_eval_question(
    name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, our_methods,
    return_user_info=True,  # Whether to return user_info tuple
    include_correct_answer=True  # Whether to return correct_answer
):
    # Merge specialties and subspecialties
    user_specialties = set(specialty_dd if isinstance(
        specialty_dd, list) else ([specialty_dd] if specialty_dd else []))
    user_subspecialties = set(subspecialty_dd if isinstance(
        subspecialty_dd, list) else ([subspecialty_dd] if subspecialty_dd else []))
    user_all_specs = user_specialties.union(user_subspecialties)

    evaluator_directory = CROWDSOURCING_DATA_DIRECTORY
    all_files = list_repo_files(
        repo_id=REPO_ID,
        repo_type="dataset",
        revision="main",
        token=os.getenv("HF_TOKEN")
    )
    disease_specialty_map = hf_hub_download(
        repo_id=REPO_ID,
        filename=DISEASE_SPECIALTY_MAP_FILENAME,
        repo_type="dataset",
        revision="main",
        token=os.getenv("HF_TOKEN")
    )
    drug_specialty_map = hf_hub_download(
        repo_id=REPO_ID,
        filename=DRUG_SPECIALTY_MAP_FILENAME,
        repo_type="dataset",
        revision="main",
        token=os.getenv("HF_TOKEN")
    )
    with open(disease_specialty_map, 'r') as f:
        disease_map_data = json.load(f)
    with open(drug_specialty_map, 'r') as f:
        drug_map_data = json.load(f)

    # Get available questions for the evaluator
    full_question_ids_list, data_by_filename = get_evaluator_questions(
        email, disease_map_data, drug_map_data, user_all_specs, all_files, evaluator_directory, our_methods
    )

    if len(full_question_ids_list) == 0:
        return None, None, None, None, None, None, None, None, 0

    # Weighted random selection of a question
    weights = [DATASET_WEIGHTS[entry[-1]] for entry in full_question_ids_list]
    q_id, our_model_name, other_model_name, _ = random.choices(
        full_question_ids_list, weights=weights, k=1)[0]
    print("Selected question ID:", q_id)

    # Build model answer lists
    models_list = []

    txagent_matched_entry = next(
        (entry for entry in data_by_filename[our_model_name] if preprocess_question_id(
            entry.get("id")) == q_id),
        None
    )
    our_model = {
        "model": our_model_name,
        "reasoning_trace": txagent_matched_entry.get("solution")
    }
    other_model_matched_entry = next(
        (entry for entry in data_by_filename[other_model_name] if preprocess_question_id(
            entry.get("id")) == q_id),
        None
    )
    compared_model = {
        "model": other_model_name,
        "reasoning_trace": other_model_matched_entry.get("solution")
    }

    models_list = [our_model, compared_model]

    random.shuffle(models_list)

    question_for_eval = {
        "question": txagent_matched_entry.get("question"),
        "id": q_id,
        "models": models_list,
    }
    if include_correct_answer:
        question_for_eval["correct_answer"] = txagent_matched_entry.get(
            "correct_answer")

    # Prepare Gradio components
    chat_A_answer, chat_A_reasoning, _ = format_chat(
        question_for_eval['models'][0]['reasoning_trace'], tool_database_labels)
    chat_B_answer, chat_B_reasoning, _ = format_chat(
        question_for_eval['models'][1]['reasoning_trace'], tool_database_labels)
    prompt_text = question_for_eval['question']

    page1_prompt = gr.HTML(
        f'<div style="background-color: #FFEFD5; border: 2px solid #FF8C00; padding: 10px; border-radius: 5px; color: black;"><strong style="color: black;">Question:</strong> {prompt_text}</div>')
    page1_reference_answer = gr.Markdown(txagent_matched_entry.get(
        "correct_answer")) if include_correct_answer else None
    chat_a_answer = gr.Chatbot(
        value=chat_A_answer,
        type="messages",
        height=200,
        label="Model A Answer",
        show_copy_button=False,
        show_label=True,
        render_markdown=True,
        avatar_images=None,
        rtl=False,
        autoscroll=False,
    )
    chat_b_answer = gr.Chatbot(
        value=chat_B_answer,
        type="messages",
        height=200,
        label="Model B Answer",
        show_copy_button=False,
        show_label=True,
        render_markdown=True,
        avatar_images=None,
        rtl=False,
        autoscroll=False,
    )
    chat_a_reasoning = gr.Chatbot(
        value=chat_A_reasoning,
        type="messages",
        height=300,
        label="Model A Reasoning - Rationale",
        show_copy_button=False,
        show_label=True,
        render_markdown=True,
        avatar_images=None,
        rtl=False,
        autoscroll=False,
    )
    chat_b_reasoning = gr.Chatbot(
        value=chat_B_reasoning,
        type="messages",
        height=300,
        label="Model B Reasoning - Rationale",
        show_copy_button=False,
        show_label=True,
        render_markdown=True,
        avatar_images=None,
        rtl=False,
        autoscroll=False,
    )

    user_info = (name, email, specialty_dd, subspecialty_dd, years_exp_radio,
                 exp_explanation_tb, npi_id, q_id) if return_user_info else None
    return user_info, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, page1_reference_answer, question_for_eval, len(full_question_ids_list)


def go_to_page0_from_minus1(question_in_progress_state):
    if question_in_progress_state == 1:
        # If a question is in progress on page 1, go directly to page 1
        return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
    elif question_in_progress_state == 2:
        # If a question is in progress on page 2, go directly to page 2
        return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
    else:
        # If no question is in progress, show the initial page 0
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)


def go_to_eval_progress_modal(name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, our_methods=our_methods):
    # 校验用户信息
    if not name or not email or not specialty_dd or not years_exp_radio:
        gr.Info("Please fill out all the required fields (name, email, specialty, years of experience). If you are not a licensed physician with a specific specialty, please choose the specialty that most closely aligns with your biomedical expertise.", duration=5)
        return gr.update(visible=True), gr.update(visible=False), None, "Please fill out all the required fields (name, email, specialty, years of experience). If you are not a licensed physician with a specific specialty, please choose the specialty that most closely aligns with your biomedical expertise.", gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.HTML(), gr.State()

    gr.Info("Loading the data...", duration=3)
    user_info, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, page1_reference_answer, question_for_eval, remaining_count = get_next_eval_question(
        name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, our_methods
    )
    if remaining_count == 0:
        gr.Info("Based on your submitted data, you have no more questions to evaluate. You may exit the page; we will follow-up if we require anything else from you. Thank you!", duration=5)
        return gr.update(visible=True), gr.update(visible=False), None, "Based on your submitted data, you have no more questions to evaluate. You may exit the page; we will follow-up if we require anything else from you. Thank you!", gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.HTML(), gr.State()
    gr.Info(f"You are about to evaluate the next question.", duration=3)
    return gr.update(visible=False), gr.update(visible=True), user_info, "", chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, question_for_eval

# goes to page 1 from confirmation modal that tells users how many questions they have left to evaluate


def go_to_page1(show_page_1):
    """
    Shows page 1 if user requests it, otherwise shows page 0
    """

    # Return updates to hide modal, hide page 0, show page 1, populate page 1, and set final state
    if show_page_1:
        updates = [
            gr.update(visible=False),  # hide modal
            gr.update(visible=False),  # hide page 0
            gr.update(visible=True),  # show page 1
        ]
    else:
        updates = [
            gr.update(visible=False),  # hide modal
            gr.update(visible=True),  # show page 0
            gr.update(visible=False),  # hide page 1
        ]
    return updates


# --- Skip Question Modal Callbacks ---
def skip_question_and_load_new(user_info_state, our_methods):
    # user_info_state is a tuple: (name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, q_id)
    if user_info_state is None:
        # Defensive: just close modal if no user info
        return gr.update(visible=False), gr.update(visible=False), None, "", gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.HTML(), gr.Markdown(), gr.State()
    # Unpack user_info_state
    name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, _ = user_info_state
    user_info, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, page1_reference_answer, question_for_eval, remaining_count = get_next_eval_question(
        name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, our_methods
    )
    if remaining_count == 0:
        # No more questions, go to final page
        return gr.update(visible=False), gr.update(visible=False), None, "Based on your submitted data, you have no more questions to evaluate. You may exit the page; we will follow-up if we require anything else from you. Thank you!", gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.Chatbot(), gr.HTML(), gr.Markdown(), gr.State()
    return gr.update(visible=False), gr.update(visible=True), user_info, "", chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, page1_reference_answer, question_for_eval

# --- Skip‑question handler for the "Wrong Question?" button -------------------


def skip_current_question(user_info_state, our_methods: list = our_methods):
    # Guard: user clicked before session started
    gr.Info("Skipping this question and loading the next one…",  duration=5)
    if user_info_state is None:
        return (
            None,
            gr.update(
                value="Please start the evaluation before skipping questions."),
            gr.update(value=[]),  # Chatbot A history
            gr.update(value=[]),  # Chatbot B history
            gr.update(value=""),  # Prompt HTML
            gr.State()            # data_subset_state
        )

    # Unpack evaluator identity
    name, email, specialty_dd, subspecialty_dd, yrs_exp, exp_desc, npi_id, _ = user_info_state

    # Pull the next unused question
    (
        user_info_new,
        _chat_a_answer,
        _chat_b_answer,
        _chat_a_reasoning,
        _chat_b_reasoning,
        _prompt_comp,
        _ref_comp,
        question_for_eval,
        remaining,
    ) = get_next_eval_question(
        name, email, specialty_dd, subspecialty_dd, yrs_exp, exp_desc, npi_id, our_methods
    )

    # If the pool is exhausted, just notify the evaluator
    if remaining == 0 or question_for_eval is None:
        final_msg = (
            "Based on your submitted data, you have no more questions to evaluate. "
            "You may exit the page; we will follow‑up if we require anything else from you. "
            "Thank you!"
        )
        return (
            user_info_state,
            gr.update(value=final_msg),
            gr.update(value=[]),
            gr.update(value=[]),
            gr.update(value=[]),
            gr.update(value=[]),
            gr.update(value=""),
            gr.State()
        )

    # --- Build fresh values for the existing UI components ---
    chat_a_answer, chat_a_reasoning, _ = format_chat(
        question_for_eval['models'][0]['reasoning_trace'], tool_database_labels)
    chat_b_answer, chat_b_reasoning, _ = format_chat(
        question_for_eval['models'][1]['reasoning_trace'], tool_database_labels)

    prompt_html = (
        f"<div style='background-color: #FFEFD5; border: 2px solid #FF8C00; padding: 10px; "
        f"border-radius: 5px; color: black;'><strong style='color: black;'>Question:</strong> "
        f"{question_for_eval['question']}</div>"
    )
    reference_md = question_for_eval.get("correct_answer", "")
    gr.Info("New question loaded…",  duration=3)

    # Return updates to refresh Page 1 in‑place
    return (
        user_info_new,
        gr.update(value=""),                 # clear any previous error text
        gr.update(value=chat_a_answer),       # Chatbot A history
        gr.update(value=chat_b_answer),       # Chatbot B history
        gr.update(value=chat_a_reasoning),    # Chatbot A reasoning
        gr.update(value=chat_b_reasoning),    # Chatbot B reasoning
        gr.update(value=prompt_html),        # Prompt
        question_for_eval                    # store for later pages
    )

# --- Handler for "Wrong Question?": flags nonsense and skips


def flag_nonsense_and_skip(user_info_state, skip_comments=""):
    """
    When the evaluator clicks the “Wrong Question?” button, immediately
    record that this question was flagged as nonsensical/irrelevant and
    then load the next question (re‑using the existing skip logic).
    """
    # 1) Record the flag to the Google Sheet so we keep the feedback even
    #    if the evaluator stops here.
    if user_info_state is not None:
        name, email, specialty_dd, subspecialty_dd, yrs_exp, exp_desc, npi_id, q_id = user_info_state
        timestamp = datetime.datetime.now().isoformat()
        row = {
            "Timestamp": timestamp,
            "Name": name,
            "Email": email,
            "Question ID": q_id,
            "Question Makes No Sense or Biomedically Irrelevant": True,
            "Skip Comments": skip_comments,
        }
        append_to_sheet(
            user_data=None,
            custom_row_dict=row,
            custom_sheet_name=str(TXAGENT_RESULTS_SHEET_BASE_NAME),
            add_header_when_create_sheet=True,
        )

    # 2) Fall back to the existing skip logic to advance the UI.
    return skip_current_question(user_info_state)

# Define restrict function for each criterion


def make_restrict_function(base_choices):
    def restrict_choices_page1(radio_choice, score_a, score_b):
        """
        Returns (update_for_A, update_for_B).
        Enforces rating constraints based on the radio choice for page 1.
        """
        # Helper to parse int safely
        def to_int(x):
            try:
                # Extract number from "1 text..." format
                return int(x.split()[0])
            except (ValueError, TypeError, AttributeError):
                return None

        # Default: no restrictions, but ensure current values are valid
        upd_A = gr.update(choices=base_choices,
                          value=score_a if score_a in base_choices else None)
        upd_B = gr.update(choices=base_choices,
                          value=score_b if score_b in base_choices else None)

        # Skip if no meaningful pairwise choice
        if radio_choice is None or radio_choice == "Neither model did well.":
            return upd_A, upd_B

        a_int = to_int(score_a)
        b_int = to_int(score_b)

        # Apply Restrictions based on radio choice
        if radio_choice == "Model A is better.":
            # Rule: A >= B
            if a_int is not None and b_int is not None:
                # Both are numeric, enforce A >= B
                if a_int < b_int:
                    # Violation: A < B, reset the one that doesn't match the constraint
                    upd_A = gr.update(choices=base_choices, value=None)
                    upd_B = gr.update(choices=base_choices, value=None)
                else:
                    # Valid: A >= B, apply mutual restrictions
                    allowed_a_choices = [choice for choice in base_choices if to_int(
                        choice) is None or to_int(choice) >= b_int]
                    allowed_b_choices = [choice for choice in base_choices if to_int(
                        choice) is None or to_int(choice) <= a_int]
                    upd_A = gr.update(
                        choices=allowed_a_choices, value=score_a if score_a in allowed_a_choices else None)
                    upd_B = gr.update(
                        choices=allowed_b_choices, value=score_b if score_b in allowed_b_choices else None)
            elif a_int is not None:
                # Only A is numeric, B must be <= A
                allowed_b_choices = [choice for choice in base_choices if to_int(
                    choice) is None or to_int(choice) <= a_int]
                upd_B = gr.update(
                    choices=allowed_b_choices, value=score_b if score_b in allowed_b_choices else None)
            elif b_int is not None:
                # Only B is numeric, A must be >= B
                allowed_a_choices = [choice for choice in base_choices if to_int(
                    choice) is None or to_int(choice) >= b_int]
                upd_A = gr.update(
                    choices=allowed_a_choices, value=score_a if score_a in allowed_a_choices else None)
            # If both are "Unable to Judge", no restrictions needed

        elif radio_choice == "Model B is better.":
            # Rule: B >= A
            if a_int is not None and b_int is not None:
                # Both are numeric, enforce B >= A
                if b_int < a_int:
                    # Violation: B < A, reset both
                    upd_A = gr.update(choices=base_choices, value=None)
                    upd_B = gr.update(choices=base_choices, value=None)
                else:
                    # Valid: B >= A, apply mutual restrictions
                    allowed_a_choices = [choice for choice in base_choices if to_int(
                        choice) is None or to_int(choice) <= b_int]
                    allowed_b_choices = [choice for choice in base_choices if to_int(
                        choice) is None or to_int(choice) >= a_int]
                    upd_A = gr.update(
                        choices=allowed_a_choices, value=score_a if score_a in allowed_a_choices else None)
                    upd_B = gr.update(
                        choices=allowed_b_choices, value=score_b if score_b in allowed_b_choices else None)
            elif a_int is not None:
                # Only A is numeric, B must be >= A
                allowed_b_choices = [choice for choice in base_choices if to_int(
                    choice) is None or to_int(choice) >= a_int]
                upd_B = gr.update(
                    choices=allowed_b_choices, value=score_b if score_b in allowed_b_choices else None)
            elif b_int is not None:
                # Only B is numeric, A must be <= B
                allowed_a_choices = [choice for choice in base_choices if to_int(
                    choice) is None or to_int(choice) <= b_int]
                upd_A = gr.update(
                    choices=allowed_a_choices, value=score_a if score_a in allowed_a_choices else None)

        elif radio_choice == "Both models are equally good.":
            # Rule: A == B
            if a_int is not None and b_int is not None:
                # Both are numeric
                if a_int == b_int:
                    # Valid: A == B, restrict both to the same value
                    upd_A = gr.update(choices=[score_a], value=score_a)
                    upd_B = gr.update(choices=[score_b], value=score_b)
                else:
                    # Invalid: A != B, reset both
                    upd_A = gr.update(choices=base_choices, value=None)
                    upd_B = gr.update(choices=base_choices, value=None)
            elif a_int is not None:
                # A is numeric, B must match A
                upd_B = gr.update(choices=[score_a], value=score_a)
            elif b_int is not None:
                # B is numeric, A must match B
                upd_A = gr.update(choices=[score_b], value=score_b)
            elif score_a == "Unable to Judge." and score_b == "Unable to Judge.":
                # Both are "Unable to Judge", restrict both to that
                upd_A = gr.update(
                    choices=["Unable to Judge."], value="Unable to Judge.")
                upd_B = gr.update(
                    choices=["Unable to Judge."], value="Unable to Judge.")
            elif score_a == "Unable to Judge.":
                # A is "Unable to Judge", B must match
                upd_B = gr.update(
                    choices=["Unable to Judge."], value="Unable to Judge.")
            elif score_b == "Unable to Judge.":
                # B is "Unable to Judge", A must match
                upd_A = gr.update(
                    choices=["Unable to Judge."], value="Unable to Judge.")
            # If neither has a value, no restrictions needed

        return upd_A, upd_B
    return restrict_choices_page1

# --- Define Callback Functions for Confirmation Flow ---


def build_row_dict(data_subset_state, user_info, pairwise, comparisons_reasons, nonsense_btn_clicked, *args):
    num_criteria = len(criteria)
    ratings_A_vals = list(args[:num_criteria])
    ratings_B_vals = list(args[num_criteria:])

    prompt_text = data_subset_state['question']
    response_A_model = data_subset_state['models'][0]['model']
    response_B_model = data_subset_state['models'][1]['model']

    timestamp = datetime.datetime.now().isoformat()
    row = {
        "Timestamp": timestamp,
        "Name": user_info[0],
        "Email": user_info[1],
        "Specialty": str(user_info[2]),
        "Subspecialty": str(user_info[3]),
        "Years of Experience": user_info[4],
        "Experience Explanation": user_info[5],
        "NPI ID": user_info[6],
        "Question ID": user_info[7],
        "Prompt": prompt_text,
        "ResponseA_Model": response_A_model,
        "ResponseB_Model": response_B_model,
        "Question Makes No Sense or Biomedically Irrelevant": nonsense_btn_clicked,
    }

    pairwise = [mapping.get(val, val) for val in pairwise]
    for i, crit in enumerate(criteria):
        label = crit['label']
        row[f"Criterion_{label} Comparison: Which is Better?"] = pairwise[i]
        row[f"Criterion_{label} Comments"] = comparisons_reasons[i]
        row[f"ScoreA_{label}"] = ratings_A_vals[i]
        row[f"ScoreB_{label}"] = ratings_B_vals[i]

    return row


def final_submit(data_subset_state, user_info, pairwise, comparisons_reasons, nonsense_btn_clicked, *args):
    # --- Part 1: Submit the current results (Existing Logic) ---
    row_dict = build_row_dict(data_subset_state, user_info,
                              pairwise, comparisons_reasons, nonsense_btn_clicked, *args)
    append_to_sheet(user_data=None, custom_row_dict=row_dict, custom_sheet_name=str(
        TXAGENT_RESULTS_SHEET_BASE_NAME), add_header_when_create_sheet=True)

    # --- Part 2: Recalculate remaining questions (Existing Logic + Modified Error Handling) ---
    name, email, specialty, subspecialty, years_exp_radio, exp_explanation_tb, npi_id, _ = user_info
    user_info_new, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, page1_reference_answer, question_for_eval, remaining_count = get_next_eval_question(
        name, email, specialty, subspecialty, years_exp_radio, exp_explanation_tb, npi_id, our_methods
    )

    if remaining_count == 0:
        return (
            "",                        # page1_error_box
            gr.update(visible=False),  # page1 (Hide)
            gr.update(visible=True),   # final_page (Show)
            "",                        # page0_error_box
            None,                      # chat_a_answer
            None,                      # chat_b_answer
            None,                      # chat_a_reasoning
            None,                      # chat_b_reasoning
            None,                      # page1_prompt
            None,                      # data_subset_state
            user_info_new,             # user_info_state
        )
    return (
        "",                        # page1_error_box
        gr.update(visible=True),   # page1 (Show for next question)
        gr.update(visible=False),  # final_page (Hide)
        "",                        # page0_error_box
        chat_a_answer,             # chat_a_answer
        chat_b_answer,             # chat_b_answer
        chat_a_reasoning,          # chat_a_reasoning
        chat_b_reasoning,          # chat_b_reasoning
        page1_prompt,              # page1_prompt
        question_for_eval,         # data_subset_state
        user_info_new              # user_info_state
    )


# Function to validate page1 inputs and directly submit if valid
def validate_and_submit_page1(data_subset_state, user_info, *combined_values):
    # combined_values contains pairwise choices + comparison reasons + ratings
    criteria_count = len(criteria_for_comparison)
    pairwise_list = list(combined_values[:criteria_count])
    comparison_reasons_list = list(
        combined_values[criteria_count:criteria_count*2])
    ratings_A_list = list(
        combined_values[criteria_count*2:criteria_count*3])
    ratings_B_list = list(combined_values[criteria_count*3:])

    # Check if all pairwise comparisons are filled
    if any(answer is None for answer in pairwise_list):
        missing_comparisons = []
        for i, answer in enumerate(pairwise_list):
            if answer is None:
                missing_comparisons.append(criteria_for_comparison[i]['label'])

        missing_text = ", ".join(missing_comparisons)
        error_msg = f"Your response is missing for: {missing_text}"
        gr.Info(error_msg)
        return (
            gr.update(value=f"Error: {error_msg}"),
            gr.update(visible=True),   # Keep page1 visible
            gr.update(visible=False),  # Keep final_page hidden
            gr.update(),  # page0_error_box - keep unchanged
            gr.update(),  # chat_a - keep unchanged
            gr.update(),  # chat_b - keep unchanged
            gr.update(),  # chat_a - keep unchanged
            gr.update(),  # chat_b - keep unchanged
            gr.update(),  # page1_prompt - keep unchanged
            gr.update(),  # data_subset_state - keep unchanged
            gr.update(),  # user_info_state - keep unchanged
            # Keep form fields unchanged on validation error
            *combined_values
        )

    # Check if all ratings are filled
    if any(r is None for r in ratings_A_list) or any(r is None for r in ratings_B_list):
        missing_ratings = []
        for i in range(len(criteria)):
            missing_parts = []
            if ratings_A_list[i] is None:
                missing_parts.append("Model A Response")
            if ratings_B_list[i] is None:
                missing_parts.append("Model B Response")
            if missing_parts:
                missing_ratings.append(
                    f"{criteria[i]['label']} ({', '.join(missing_parts)})")

        missing_text = "; ".join(missing_ratings)
        error_msg = f"Please provide ratings for: {missing_text}"
        gr.Info(error_msg)
        return (
            gr.update(value=f"Error: {error_msg}"),
            gr.update(visible=True),   # Keep page1 visible
            gr.update(visible=False),  # Keep final_page hidden
            gr.update(),  # page0_error_box - keep unchanged
            gr.update(),  # chat_a - keep unchanged
            gr.update(),  # chat_b - keep unchanged
            gr.update(),  # chat_a - keep unchanged
            gr.update(),  # chat_b - keep unchanged
            gr.update(),  # page1_prompt - keep unchanged
            gr.update(),  # data_subset_state - keep unchanged
            gr.update(),  # user_info_state - keep unchanged
            # Keep form fields unchanged on validation error
            *combined_values
        )
    gr.Info("Submitting your evaluation and loading the next question...")
    # If validation passes, call final_submit and handle form reset
    submit_result = final_submit(data_subset_state, user_info, pairwise_list,
                                 comparison_reasons_list, False, *ratings_A_list, *ratings_B_list)

    # Check if there are more questions by looking at the page1 update dict
    # submit_result[1] is the page1 update, submit_result[2] is the final_page update
    page1_update = submit_result[1]
    page1_visible = page1_update.get('visible', False) if isinstance(
        page1_update, dict) else False
    gr.Info(f"Your evaluation has been submitted. You are about to evaluate the next question...")
    # If there are more questions (page1 is visible after submit), reset the form
    if page1_visible:  # page1 is visible, meaning there's a next question
        # Reset form fields for next question
        reset_values = []
        for _ in range(len(combined_values)):
            reset_values.append(None)
        return submit_result + tuple(reset_values)
    else:
        # Final page is shown, keep current form values (though they won't be visible)
        return submit_result + tuple(combined_values)


centered_col_css = """
#centered-column {
    margin-left: auto;
    margin-right: auto;
    max-width: 800px; /* Adjust this width as desired */
    width: 100%;
}
#participate-btn {
    background-color: purple !important;
    color: white !important;
    border-color: purple !important;
}
#answer-reference-btn {
  /* Light‑mode palette */
  --btn-bg: #E0F2FF;        /* soft pastel blue */
  --btn-text: #00334D;      /* dark slate for good contrast */
  --btn-border: #E0F2FF;

  background-color: var(--btn-bg) !important;
  color: var(--btn-text) !important;
  border: 1px solid var(--btn-border) !important;
}

/* Dark‑mode overrides */
@media (prefers-color-scheme: dark) {
  #answer-reference-btn {
    --btn-bg: #2C6E98;      /* muted steel blue for dark backgrounds */
    --btn-text: #FFFFFF;    /* switch to white text for contrast */
    --btn-border: #2C6E98;
  }
}

#clear_btn {
    background-color: #F08080 !important;
    color: white !important;
    border-color: #F08080 !important;
}
.reference-box {
    border: 1px solid #ccc;
    padding: 10px;
    border-radius: 5px;
}
.short-btn { min-width: 80px !important; max-width: 120px !important; width: 100px !important; padding-left: 4px !important; padding-right: 4px !important; }
.light-stop-btn { background-color: #ffcccc !important; color: #b30000 !important; border-color: #ffcccc !important; }

/* --- Added for larger criteria font --- */
.criteria-font-large {
    font-size: 1.2em !important;
}
/* Radio component labels (the title above the choices) */
.criteria-radio-label label[data-testid="block-label"] {
    font-weight: bold !important;
    font-size: 1.1em !important;
}
/* Textbox labels */
.textbox-bold-label label[data-testid="block-label"] {
    font-weight: bold !important;
}
#participate-btn button {
    font-size: 24px !important;      /* Large readable text */
    font-weight: 700 !important;     /* Bold for emphasis */
    padding: 28px 40px !important;   /* Extra padding for height */
    min-height: 120px !important;    /* Make button visibly taller (multi‑line) */
    width: 100% !important;          /* Occupy full width of its column */
    white-space: normal !important;  /* Allow text to wrap onto multiple lines */
}
.criteria-radio-score-label [role="radiogroup"],
.criteria-radio-score-label .gr-radio-group,
.criteria-radio-score-label .flex {
    display: flex !important;
    flex-direction: column !important;
    gap: 4px !important;                 /* 行间距,可按需调整 */
}

/* 更具体的选择器来确保垂直布局 */
.criteria-radio-score-label fieldset {
    display: flex !important;
    flex-direction: column !important;
    gap: 4px !important;
}

.criteria-radio-score-label .wrap {
    display: flex !important;
    flex-direction: column !important;
    gap: 4px !important;
}

/* 确保每个单选按钮选项垂直排列 */
.criteria-radio-score-label label {
    display: block !important;
    margin-bottom: 4px !important;
}
"""
with gr.Blocks(css=centered_col_css) as demo:
    # States to save information between pages.
    user_info_state = gr.State()
    pairwise_state = gr.State()
    scores_A_state = gr.State()
    comparison_reasons = gr.State()
    nonsense_btn_clicked = gr.State(False)
    unqualified_A_state = gr.State()
    data_subset_state = gr.State()
    question_in_progress = gr.State(0)

    # Load specialty data
    specialties_path = "specialties.json"
    subspecialties_path = "subspecialties.json"

    try:
        with open(specialties_path, 'r') as f:
            specialties_list = json.load(f)
        with open(subspecialties_path, 'r') as f:
            subspecialties_list = json.load(f)
    except FileNotFoundError:
        print(
            f"Error: Could not find specialty files at {specialties_path} or {subspecialties_path}. Please ensure these files exist.")
        # Provide default empty lists or handle the error as appropriate
        specialties_list = ["Error loading specialties"]
        subspecialties_list = ["Error loading subspecialties"]
    except json.JSONDecodeError:
        print(f"Error: Could not parse JSON from specialty files.")
        specialties_list = ["Error parsing specialties"]
        subspecialties_list = ["Error parsing subspecialties"]

    # Page -1: Page to link them to question submission form or evaluation portal
    with gr.Column(visible=True, elem_id="page-1") as page_minus1:
        gr.HTML("""
        <div>
            <h1>TxAgent Portal: AI Evaluation and Crowdsourcing of Therapeutic Questions</h1>
        </div>
        """)
        # with gr.Row(elem_classes=["center-row"]):
        # 第一行:并排放两个按钮
        with gr.Column(scale=1):
            participate_eval_btn = gr.Button(
                value="Evaluate TxAgent",
                variant="primary",
                size="lg",
                elem_id="participate-btn"
            )
        with gr.Column(scale=1):
            gr.Markdown(
                """
                When you join Evaluate TxAgent, you will:
                - See model responses to diverse prompts.
                - Provide instant thumbs-up or thumbs-down ratings.
                - Influence the roadmap for future releases.

                Thank you for helping improve TxAgent!
                """
            )
        with gr.Column(scale=1):
            submit_questions_btn = gr.Button(
                value="Submit Your Therapeutic Questions",
                variant="primary",
                size="lg",
                elem_id="submit-btn"
            )

        # with gr.Row(elem_classes=["center-row"]):
            # 第二行:分别放两段说明文字
        with gr.Column(scale=1):
            gr.Markdown(
                """
                By submitting therapeutic questions, you will:
                - Help identify edge cases and blind spots for AI models.
                - Help extend AI models to reason in new domains.
                - Directly shape future model improvements.

                We look forward to seeing your feedback!
                """
            )

            # Add contact information in Markdown format
            contact_info_markdown = """
            ## Contact

            For questions or suggestions, email [Shanghua Gao](mailto:[email protected]) and [Marinka Zitnik](mailto:[email protected]).
            """

            gr.Markdown(contact_info_markdown)

        gr.HTML(TxAgent_Project_Page_HTML)

        # Define actions for the new buttons
        # For the Google Form button, we'll use JavaScript to open a new tab.
        # The URL for the Google Form should be replaced with the actual link.
        google_form_url = "https://forms.gle/pYvyvEQQwS5gdupQA"
        submit_questions_btn.click(
            fn=None,
            inputs=None,
            outputs=None,
            js=f"() => {{ window.open('{google_form_url}', '_blank'); }}"
        )

    # Page 0: Welcome / Informational page.
    with gr.Column(visible=False, elem_id="page0") as page0:

        gr.Markdown("## Sign Up")
        name = gr.Textbox(label="Name (required)")
        email = gr.Textbox(
            label="Email (required). Use the same email each time you log into this evaluation portal to avoid receiving repeat questions.")
        specialty_dd = gr.Dropdown(
            choices=specialties_list, label="Primary Medical Specialty (required). Visit https://www.abms.org/member-boards/specialty-subspecialty-certificates/ for categories.", multiselect=True)
        subspecialty_dd = gr.Dropdown(
            choices=subspecialties_list, label="Subspecialty (if applicable). Visit https://www.abms.org/member-boards/specialty-subspecialty-certificates/ for categories.", multiselect=True)
        npi_id = gr.Textbox(
            label="National Provider Identifier ID (optional). Visit https://npiregistry.cms.hhs.gov/search to find your NPI ID. Leave blank if you do not have an NPI ID.")
        years_exp_radio = gr.Radio(
            choices=["0-2 years", "3-5 years", "6-10 years",
                     "11-20 years", "20+ years", "Not Applicable"],
            label="Years of experience in clinical and/or research activities related to your biomedical expertise (required)."
        )
        exp_explanation_tb = gr.Textbox(
            label="Briefly describe your expertise in AI (optional).")

        page0_error_box = gr.Markdown("")
        with gr.Row():
            next_btn_0 = gr.Button("Next")
        gr.Markdown("""Click Next to start the study. Your progress will be saved after you submit each question. For questions or concerns, contact us directly. Thank you for participating!
            """)
        # with open("anatomyofAgentResponse.jpg", "rb") as image_file:
        #     img = Image.open(image_file)
        #     new_size = (int(img.width * 0.5), int(img.height * 0.5))
        #     img = img.resize(new_size, Image.LANCZOS)
        #     buffer = io.BytesIO()
        #     img.save(buffer, format="PNG")
        #     encoded_string = base64.b64encode(
        #         buffer.getvalue()).decode("utf-8")

        # image_html = f'<div style="text-align:center;"><img src="data:image/png;base64,{encoded_string}" alt="Your Image"></div>'
        # ReasoningTraceExampleHTML = f"""
        #     <div>
        #         {image_html}
        #     </div>
        #     """
        # gr.HTML(ReasoningTraceExampleHTML)

    # Page 1: Pairwise Comparison.
    with gr.Column(visible=False) as page1:
        with gr.Accordion("Instructions", open=False):
            gr.Markdown("""
                    ## Instructions:
                    Please review these instructions and enter your information to begin:

                    - Each session requires at least 5-10 minutes per question.
                    - You can evaluate multiple questions; you will not repeat evaluations.
                    - For each question, compare responses from two models and rate them (scale: 1-5).
                    - If a question is unclear or irrelevant to biomedicine, click the RED BUTTON at the top of the comparison page.
                    - Use the Back and Next buttons to edit responses before submission.
                    - Use the Home Page button to return to the homepage; progress will save but not submit.
                    - Submit answers to the current question before moving to the next.
                    - You can pause between questions and return later; ensure current answers are submitted to save them.
                """)
        # Make the number controlled by question indexing!
        # gr.Markdown("Comparison")
        # Add small red button and comments text box in the same row
        page1_prompt = gr.HTML()
        with gr.Row():
            nonsense_btn = gr.Button(
                "Skip Question",
                size="sm",
                variant="stop",  # red variant
                elem_id="invalid-question-btn",
                elem_classes=["short-btn"],
                scale=1
            )
            skip_comments = gr.Textbox(
                placeholder="(Optional) Why do you want to skip this question...",
                show_label=False,
                scale=3,
                container=False,
            )

        page1_error_box = gr.Markdown("")  # ADDED: display validation errors

        # --- Define four chat components: answer and reasoning for each model ---
        with gr.Row():
            # Model A components
            with gr.Column():
                gr.Markdown("**Model A Response:**")
                chat_a_answer = gr.Chatbot(
                    value=[],  # Placeholder for chat history
                    type="messages",
                    height=200,
                    label="Model A Answer",
                    show_copy_button=False,
                    show_label=True,
                    render_markdown=True,
                    avatar_images=None,
                    rtl=False
                )
                # gr.Markdown("**Model A Reasoning:**")
                chat_a_reasoning = gr.Chatbot(
                    value=[],
                    type="messages",
                    height=300,
                    label="Model A Reasoning - Rationale",
                    show_copy_button=False,
                    show_label=True,
                    render_markdown=True,
                    avatar_images=None,
                    rtl=False
                )
            # Model B components
            with gr.Column():
                gr.Markdown("**Model B Response:**")
                chat_b_answer = gr.Chatbot(
                    value=[],
                    type="messages",
                    height=200,
                    label="Model B Answer",
                    show_copy_button=False,
                    show_label=True,
                    render_markdown=True,
                    avatar_images=None,
                    rtl=False
                )
                # gr.Markdown("**Model B Reasoning:**")
                chat_b_reasoning = gr.Chatbot(
                    value=[],
                    type="messages",
                    height=300,
                    label="Model B Reasoning - Rationale",
                    show_copy_button=False,
                    show_label=True,
                    render_markdown=True,
                    avatar_images=None,
                    rtl=False
                )
        # gr.Markdown("<br><br>")
        # gr.Markdown("### For each criterion, select which response did better:")
        comparison_reasons_inputs = []  # ADDED: list to store the free-text inputs
        pairwise_inputs = []
        ratings_A_page1 = []  # Store rating components for page 1
        ratings_B_page1 = []  # Store rating components for page 1

        for i, crit_comp in enumerate(criteria_for_comparison):
            # for crit in criteria_for_comparison:
            crit_score = criteria[i]  # Get the corresponding score criterion

            restrict_fn = make_restrict_function(sorted(crit_score["scores"]))

            # Add bold formatting
            gr.Markdown(f"**{crit_comp['label']}**",
                        elem_classes="criteria-font-large")
            radio = gr.Radio(
                choices=[
                    "Model A is better.",
                    "Model B is better.",
                    "Both models are equally good.",
                    "Neither model did well."
                ],
                # Remove duplicate label since we have markdown above
                label=crit_comp['text'],
                elem_classes="criteria-radio-label"  # <--- add class here
            )
            pairwise_inputs.append(radio)
            # ADDED: free text under each comparison

        # for i, crit in enumerate(criteria):
            index_component = gr.Number(
                value=i, visible=False, interactive=False)
            # indices_for_change.append(index_component)

            with gr.Row():
                with gr.Column(scale=1):
                    rating_a = gr.Radio(choices=sorted(crit_score["scores"]),  # ["1", "2", "3", "4", "5", "Unable to Judge"],
                                        label=f"Model A Response - {crit_score['text']}",
                                        interactive=True,
                                        elem_classes="criteria-radio-score-label")
                with gr.Column(scale=1):
                    rating_b = gr.Radio(choices=sorted(crit_score["scores"]),  # ["1", "2", "3", "4", "5", "Unable to Judge"],
                                        label=f"Model B Response - {crit_score['text']}",
                                        interactive=True,
                                        elem_classes="criteria-radio-score-label")

            # Add clear button and wire up the restrictions
            with gr.Row():
                # wire each to re‐restrict the other on change
                radio.change(
                    fn=restrict_fn,
                    inputs=[radio, rating_a, rating_b],
                    outputs=[rating_a, rating_b]
                )
                rating_a.change(
                    fn=restrict_fn,
                    inputs=[radio, rating_a, rating_b],
                    outputs=[rating_a, rating_b]
                )
                rating_b.change(
                    fn=restrict_fn,
                    inputs=[radio, rating_a, rating_b],
                    outputs=[rating_a, rating_b]
                )

            ratings_A_page1.append(rating_a)
            ratings_B_page1.append(rating_b)

            text_input = gr.Textbox(
                # Remove label since we have markdown above
                placeholder="Comments for your selection (optional)",
                show_label=False,
                # elem_classes="textbox-bold-label"
            )
            comparison_reasons_inputs.append(text_input)

        with gr.Row():
            submit_btn_1 = gr.Button(
                "Submit Evaluation", variant="primary", elem_id="submit_btn")

    # Final Page: Thank you message.
    with gr.Column(visible=False, elem_id="final_page") as final_page:
        gr.Markdown(
            "## You have no questions left to evaluate. Thank you for your participation!")

    # Error Modal: For displaying validation errors.
    with Modal("Error", visible=False, elem_id="error_modal") as error_modal:
        error_message_box = gr.Markdown()
        ok_btn = gr.Button("OK")
        # Clicking OK hides the modal.
        ok_btn.click(lambda: gr.update(visible=False), None, error_modal)

    # --- Define Transitions Between Pages ---

    # For the "Participate in Evaluation" button, transition to page0
    participate_eval_btn.click(
        fn=go_to_page0_from_minus1,
        inputs=[question_in_progress],
        # Removed page2 reference
        outputs=[page_minus1, page0, page1, final_page]
    )

    # Transition from Page 0 (Welcome) to Page 1.
    next_btn_0.click(
        fn=go_to_eval_progress_modal,
        inputs=[name, email, specialty_dd, subspecialty_dd,
                years_exp_radio, exp_explanation_tb, npi_id],
        outputs=[page0, page1, user_info_state, page0_error_box, chat_a_answer,
                 chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, data_subset_state],
        scroll_to_output=True
    )
    # Skip the current question and load a new one when the evaluator flags it
    nonsense_btn.click(
        fn=flag_nonsense_and_skip,
        inputs=[user_info_state, skip_comments],
        outputs=[user_info_state, page1_error_box, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning,
                 page1_prompt, data_subset_state],
        scroll_to_output=True
    )

    # Transition from Page 1 to direct submission (no confirmation modal)
    submit_btn_1.click(
        fn=validate_and_submit_page1,
        inputs=[data_subset_state, user_info_state, *pairwise_inputs,
                *comparison_reasons_inputs, *ratings_A_page1, *ratings_B_page1],
        outputs=[page1_error_box, page1, final_page, page0_error_box, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning,
                 page1_prompt, data_subset_state, user_info_state, *pairwise_inputs, *comparison_reasons_inputs, *ratings_A_page1, *ratings_B_page1],
        scroll_to_output=True
    )


demo.launch(share=True, allowed_paths=["."])