File size: 15,024 Bytes
e59dbdb
 
 
 
 
 
 
47280b7
de321fc
b7d1f08
de321fc
e59dbdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de321fc
 
e59dbdb
de321fc
e59dbdb
 
 
 
 
 
de321fc
 
e59dbdb
de321fc
e59dbdb
 
 
 
 
 
 
de321fc
47280b7
 
e59dbdb
 
 
 
 
 
22fef14
 
 
 
 
 
 
 
 
de321fc
e59dbdb
 
 
 
9250161
e59dbdb
 
 
 
 
 
de321fc
 
e59dbdb
 
 
 
 
 
de321fc
 
 
e59dbdb
 
 
 
 
 
 
de321fc
 
 
 
e59dbdb
 
 
 
 
 
 
 
de321fc
 
 
e59dbdb
 
 
 
de321fc
47280b7
 
e59dbdb
 
 
 
 
22fef14
 
 
 
 
 
 
 
 
 
e59dbdb
 
 
 
 
 
 
de321fc
 
e59dbdb
de321fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e59dbdb
 
 
 
de321fc
 
e59dbdb
de321fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b69a733
de321fc
 
 
 
 
 
 
 
b69a733
 
 
 
 
 
 
 
de321fc
e59dbdb
de321fc
e59dbdb
 
 
 
 
 
 
 
b7d1f08
 
 
 
 
 
de321fc
 
 
 
 
 
 
 
 
 
 
 
 
b69a733
 
de321fc
 
b69a733
 
 
 
 
de321fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e59dbdb
22fef14
e59dbdb
 
 
 
de321fc
 
47280b7
e59dbdb
 
 
 
 
 
 
 
 
 
22fef14
 
 
 
 
 
 
 
de321fc
 
 
e59dbdb
 
 
47280b7
 
 
 
de321fc
47280b7
 
 
 
de321fc
 
 
47280b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7d1f08
 
 
 
 
 
 
 
 
 
 
e59dbdb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import json
from pathlib import Path
import sqlite3
import pickle
from functools import lru_cache
import threading
import pandas as pd
import ast
from scipy import stats
import yaml
import numpy as np

class TracePreprocessor:
    def __init__(self, db_path='preprocessed_traces.db'):
        self.db_path = db_path
        self.local = threading.local()

    def get_conn(self):
        if not hasattr(self.local, 'conn'):
            self.local.conn = sqlite3.connect(self.db_path)
        return self.local.conn

    def create_tables(self):
        with self.get_conn() as conn:
            conn.execute('''
                CREATE TABLE IF NOT EXISTS preprocessed_traces (
                    benchmark_name TEXT,
                    agent_name TEXT,
                    date TEXT,
                    run_id TEXT,
                    raw_logging_results BLOB,
                    PRIMARY KEY (benchmark_name, agent_name, run_id)
                )
            ''')
            conn.execute('''
                CREATE TABLE IF NOT EXISTS failure_reports (
                    benchmark_name TEXT,
                    agent_name TEXT,
                    date TEXT,
                    run_id TEXT,
                    failure_report BLOB,
                    PRIMARY KEY (benchmark_name, agent_name, run_id)
                )
            ''')
            conn.execute('''
                CREATE TABLE IF NOT EXISTS parsed_results (
                    benchmark_name TEXT,
                    agent_name TEXT,
                    date TEXT,
                    run_id TEXT,
                    successful_tasks TEXT,
                    failed_tasks TEXT,
                    total_cost REAL,
                    accuracy REAL,
                    precision REAL,
                    recall REAL,
                    f1_score REAL,
                    auc REAL,
                    overall_score REAL,
                    vectorization_score REAL,
                    fathomnet_score REAL,
                    feedback_score REAL,
                    house_price_score REAL,
                    spaceship_titanic_score REAL,
                    amp_parkinsons_disease_progression_prediction_score REAL,
                    cifar10_score REAL,
                    imdb_score REAL,
                    PRIMARY KEY (benchmark_name, agent_name, run_id)
                )
            ''')

    def preprocess_traces(self, processed_dir="evals_live"):
        self.create_tables()
        processed_dir = Path(processed_dir)
        for file in processed_dir.glob('*.json'):
            with open(file, 'r') as f:
                data = json.load(f)
                agent_name = data['config']['agent_name']
                benchmark_name = data['config']['benchmark_name']
                date = data['config']['date']
                config = data['config']

            try:
                raw_logging_results = pickle.dumps(data['raw_logging_results'])
                with self.get_conn() as conn:
                    conn.execute('''
                        INSERT OR REPLACE INTO preprocessed_traces 
                        (benchmark_name, agent_name, date, run_id, raw_logging_results) 
                        VALUES (?, ?, ?, ?, ?)
                    ''', (benchmark_name, agent_name, date, config['run_id'], raw_logging_results))
            except Exception as e:
                print(f"Error preprocessing raw_logging_results in {file}: {e}")

            try:
                failure_report = pickle.dumps(data['failure_report'])
                with self.get_conn() as conn:
                    conn.execute('''
                        INSERT INTO failure_reports 
                        (benchmark_name, agent_name, date, run_id, failure_report)
                        VALUES (?, ?, ?, ? ,?)
                    ''', (benchmark_name, agent_name, date, config['run_id'], failure_report))
            except Exception as e:
                print(f"Error preprocessing failure_report in {file}: {e}")

            try:
                config = data['config']
                results = data['results']
                with self.get_conn() as conn:
                    conn.execute('''
                        INSERT INTO parsed_results 
                        (benchmark_name, agent_name, date, run_id, successful_tasks, failed_tasks, total_cost, accuracy, precision, recall, f1_score, auc, overall_score, vectorization_score, fathomnet_score, feedback_score, house_price_score, spaceship_titanic_score, amp_parkinsons_disease_progression_prediction_score, cifar10_score, imdb_score) 
                        VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
                    ''', (
                        benchmark_name,
                        agent_name,
                        config['date'],
                        config['run_id'],
                        str(results.get('successful_tasks')),
                        str(results.get('failed_tasks')),
                        results.get('total_cost'),
                        results.get('accuracy'),
                        results.get('precision'),
                        results.get('recall'),
                        results.get('f1_score'),
                        results.get('auc'),
                        results.get('overall_score'),
                        results.get('vectorization_score'),
                        results.get('fathomnet_score'),
                        results.get('feedback_score'),
                        results.get('house-price_score'),
                        results.get('spaceship-titanic_score'),
                        results.get('amp-parkinsons-disease-progression-prediction_score'),
                        results.get('cifar10_score'),
                        results.get('imdb_score')
                    ))
            except Exception as e:
                print(f"Error preprocessing parsed results in {file}: {e}")

    @lru_cache(maxsize=100)
    def get_analyzed_traces(self, agent_name, benchmark_name):
        with self.get_conn() as conn:
            query = '''
                SELECT agent_name, raw_logging_results, date FROM preprocessed_traces 
                WHERE benchmark_name = ? AND agent_name = ?
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name, agent_name))


        # check for each row if raw_logging_results is not None with pickle.loads because it is stored as a byte string
        df = df[df['raw_logging_results'].apply(lambda x: pickle.loads(x) is not None and x != 'None')]

        if len(df) == 0:
            return None

        # select latest run
        df = df.sort_values('date', ascending=False).groupby('agent_name').first().reset_index()


        return pickle.loads(df['raw_logging_results'][0])


    @lru_cache(maxsize=100)
    def get_failure_report(self, agent_name, benchmark_name):
        with self.get_conn() as conn:
            query = '''
                SELECT agent_name, date, failure_report FROM failure_reports 
                WHERE benchmark_name = ? AND agent_name = ?
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name, agent_name))

        # Select only rows for which failure report is not None and None is a string
        df = df[df['failure_report'].apply(lambda x: pickle.loads(x) is not None and x != 'None')]

        if len(df) == 0:
            return None
        

        # if there is multiple failure reports, take the last one
        df = df.sort_values('date', ascending=False).groupby('agent_name').first().reset_index()

        # if there is a failure report, return the first one
        return pickle.loads(df['failure_report'][0])
    
    def _calculate_ci(self, data, confidence=0.95, type='minmax'):
        data = data[np.isfinite(data)]

        if len(data) < 2:
            return '', '', '' # No CI for less than 2 samples
        n = len(data)

        mean = np.mean(data)

        if type == 't':
            sem = stats.sem(data)
            ci = stats.t.interval(confidence, n-1, loc=mean, scale=sem)

        elif type == 'minmax':
            min = np.min(data)
            max = np.max(data)
            ci = (min, max)
        return mean, ci[0], ci[1]
    
    def get_parsed_results(self, benchmark_name, aggregate=True):
        with self.get_conn() as conn:
            query = '''
                SELECT * FROM parsed_results 
                WHERE benchmark_name = ?
                ORDER BY accuracy DESC
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name,))

        # Load verified agents
        verified_agents = self.load_verified_agents()

        # Add 'Verified' column
        df['Verified'] = df.apply(lambda row: '✓' if (benchmark_name, row['agent_name']) in verified_agents else '', axis=1)


        
        # Add column for how many times an agent_name appears in the DataFrame
        df['Runs'] = df.groupby('agent_name')['agent_name'].transform('count')

        # Compute the 95% confidence interval for accuracy and cost for agents that have been run more than once
        df['acc_ci'] = None
        df['cost_ci'] = None

        for agent_name in df['agent_name'].unique():
            agent_df = df[df['agent_name'] == agent_name]
            
            if len(agent_df) > 1:
                accuracy_mean, accuracy_lower, accuracy_upper = self._calculate_ci(agent_df['accuracy'], type='minmax')
                cost_mean, cost_lower, cost_upper = self._calculate_ci(agent_df['total_cost'], type='minmax')
                
                # format the confidence interval with +/- sign
                # accuracy_ci = f"± {abs(accuracy_mean - accuracy_lower):.3f}"
                # cost_ci = f"± {abs(cost_mean - cost_lower):.3f}"

                accuracy_ci = f"-{abs(accuracy_mean - accuracy_lower):.3f}/+{abs(accuracy_mean - accuracy_upper):.3f}"
                cost_ci = f"-{abs(cost_mean - cost_lower):.3f}/+{abs(cost_mean - cost_upper):.3f}"
                
                df.loc[df['agent_name'] == agent_name, 'acc_ci'] = accuracy_ci
                df.loc[df['agent_name'] == agent_name, 'cost_ci'] = cost_ci


        df = df.drop(columns=['successful_tasks', 'failed_tasks', 'run_id'], axis=1)

        if aggregate:
            # For agents that have been run more than once, compute the average accuracy and cost and use that as the value in the DataFrame
            df = df.groupby('agent_name').agg({
                'date': 'first',
                'total_cost': 'mean',
                'accuracy': 'mean',
                'precision': 'mean',
                'recall': 'mean',
                'f1_score': 'mean',
                'auc': 'mean',
                'overall_score': 'mean',
                'vectorization_score': 'mean',
                'fathomnet_score': 'mean',
                'feedback_score': 'mean',
                'house_price_score': 'mean',
                'spaceship_titanic_score': 'mean',
                'amp_parkinsons_disease_progression_prediction_score': 'mean',
                'cifar10_score': 'mean',
                'imdb_score': 'mean',
                'Verified': 'first',
                'Runs': 'first',
                'acc_ci': 'first',
                'cost_ci': 'first'
            }).reset_index()

        # Round float columns to 3 decimal places
        float_columns = ['total_cost', 'accuracy', 'precision', 'recall', 'f1_score', 'auc', 'overall_score', 'vectorization_score', 'fathomnet_score', 'feedback_score', 'house-price_score', 'spaceship-titanic_score', 'amp-parkinsons-disease-progression-prediction_score', 'cifar10_score', 'imdb_score']
        for column in float_columns:
            if column in df.columns:
                df[column] = df[column].round(3)

        # sort by accuracy
        df = df.sort_values('accuracy', ascending=False)

        # Rename columns
        df = df.rename(columns={
            'agent_name': 'Agent Name',
            'date': 'Date',
            'total_cost': 'Total Cost',
            'accuracy': 'Accuracy',
            'precision': 'Precision',
            'recall': 'Recall',
            'f1_score': 'F1 Score',
            'auc': 'AUC',
            'overall_score': 'Overall Score',
            'vectorization_score': 'Vectorization Score',
            'fathomnet_score': 'Fathomnet Score',
            'feedback_score': 'Feedback Score',
            'house_price_score': 'House Price Score',
            'spaceship_titanic_score': 'Spaceship Titanic Score',
            'amp_parkinsons_disease_progression_prediction_score': 'AMP Parkinsons Disease Progression Prediction Score',
            'cifar10_score': 'CIFAR10 Score',
            'imdb_score': 'IMDB Score',
            'acc_ci': 'Accuracy CI',
            'cost_ci': 'Total Cost CI'
        })

        return df
    
    def get_task_success_data(self, benchmark_name):
        with self.get_conn() as conn:
            query = '''
                SELECT agent_name, accuracy, successful_tasks, failed_tasks
                FROM parsed_results 
                WHERE benchmark_name = ?
            '''
            df = pd.read_sql_query(query, conn, params=(benchmark_name,))

        # for agent_names that have been run more than once, take the run with the highest accuracy
        df = df.sort_values('accuracy', ascending=False).groupby('agent_name').first().reset_index()
        
        # Get all unique task IDs
        task_ids = set()
        for tasks in df['successful_tasks']:
            if ast.literal_eval(tasks) is not None:
                task_ids.update(ast.literal_eval(tasks))
        for tasks in df['failed_tasks']:
            if ast.literal_eval(tasks) is not None:
                task_ids.update(ast.literal_eval(tasks))

        # Create a DataFrame with agent_name, task_ids, and success columns
        data_list = []
        for _, row in df.iterrows():
            agent_name = row['agent_name']
            for task_id in task_ids:
                success = 1 if task_id in row['successful_tasks'] else 0
                data_list.append({
                    'agent_name': agent_name,
                    'task_id': task_id,
                    'success': success
                })
        df = pd.DataFrame(data_list)

        df = df.rename(columns={
            'agent_name': 'Agent Name',
            'task_id': 'Task ID',
            'success': 'Success'
        })

        return df
    
    def load_verified_agents(self, file_path='verified_agents.yaml'):
        with open(file_path, 'r') as f:
            verified_data = yaml.safe_load(f)
        
        verified_agents = set()
        for benchmark, agents in verified_data.items():
            for agent in agents:
                verified_agents.add((benchmark, agent['agent_name']))
        
        return verified_agents

if __name__ == '__main__':
    preprocessor = TracePreprocessor()
    preprocessor.preprocess_traces()