Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import json
|
4 |
+
import argparse
|
5 |
+
import time
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Read demo data received from AWS IoT MQTT Broker
|
9 |
+
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
|
10 |
+
LOG_FILE = os.path.join(CURRENT_DIR, "demo.json")
|
11 |
+
|
12 |
+
def load_data():
|
13 |
+
try:
|
14 |
+
if not os.path.exists(LOG_FILE):
|
15 |
+
return pd.DataFrame(columns=["timestamp", "energy_kW"])
|
16 |
+
with open(LOG_FILE, "r") as file:
|
17 |
+
data = json.load(file)
|
18 |
+
df = pd.DataFrame(data)
|
19 |
+
df['energy_kW'] = df['energy_kW'].astype(float)
|
20 |
+
df['timestamp'] = pd.to_datetime(df['timestamp'], format='%d/%m/%Y')
|
21 |
+
return df.head(10) # Show first 10 readings
|
22 |
+
except json.JSONDecodeError:
|
23 |
+
print("Error decoding JSON from log file.")
|
24 |
+
return pd.DataFrame(columns=["timestamp", "energy_kW"])
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error loading data: {e}")
|
27 |
+
return pd.DataFrame(columns=["timestamp", "energy_kW"])
|
28 |
+
|
29 |
+
def update_data(df):
|
30 |
+
while True:
|
31 |
+
time.sleep(1)
|
32 |
+
new_data = load_data() # Load only new or changed data
|
33 |
+
df.update(value=new_data)
|
34 |
+
yield
|
35 |
+
|
36 |
+
def generate_dashboard(plot_type, show_power, show_timestamp):
|
37 |
+
df = load_data()
|
38 |
+
if df.empty:
|
39 |
+
return df, gr.update(visible=False), gr.update(visible=False)
|
40 |
+
|
41 |
+
# Filter columns based on checkboxes
|
42 |
+
columns_to_show = []
|
43 |
+
if show_timestamp:
|
44 |
+
columns_to_show.append("timestamp")
|
45 |
+
if show_power:
|
46 |
+
columns_to_show.append("energy_kW")
|
47 |
+
|
48 |
+
df_filtered = df[columns_to_show]
|
49 |
+
|
50 |
+
table_update = gr.update(value=df_filtered, visible=(plot_type == "Table"))
|
51 |
+
line_plot_update = gr.update(
|
52 |
+
value=df_filtered,
|
53 |
+
x="timestamp" if show_timestamp else None,
|
54 |
+
y="energy_kW" if show_power else None,
|
55 |
+
title="Energy Consumption Over Time",
|
56 |
+
tooltip=columns_to_show,
|
57 |
+
visible=(plot_type == "Line Plot"),
|
58 |
+
height="50vh"
|
59 |
+
)
|
60 |
+
bar_plot_update = gr.update(
|
61 |
+
value=df_filtered,
|
62 |
+
x="timestamp" if show_timestamp else "energy_kW",
|
63 |
+
y="energy_kW" if show_power else None,
|
64 |
+
title="Energy Consumption Distribution",
|
65 |
+
tooltip=columns_to_show,
|
66 |
+
visible=(plot_type == "Histogram"),
|
67 |
+
height="50vh"
|
68 |
+
)
|
69 |
+
|
70 |
+
return table_update, line_plot_update, bar_plot_update
|
71 |
+
|
72 |
+
custom_css = """
|
73 |
+
@media (min-width: 768px) {
|
74 |
+
.plot-container {
|
75 |
+
height: 500px !important;
|
76 |
+
}
|
77 |
+
}
|
78 |
+
@media (max-width: 767px) {
|
79 |
+
.plot-container {
|
80 |
+
height: 50vh !important;
|
81 |
+
}
|
82 |
+
}
|
83 |
+
"""
|
84 |
+
|
85 |
+
with gr.Blocks(css=custom_css) as app:
|
86 |
+
gr.Markdown("<h1 style='text-align: center;'>β‘ SmartMeterSim Dashboard β‘</h1>")
|
87 |
+
gr.Markdown("<h3 style='text-align: center;'>π Optimize your energy footprint instantly with real-time usage data.</h3>")
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
with gr.Column(scale=2): # Sidebar (20% width)
|
91 |
+
gr.Markdown("## π‘ Measurements")
|
92 |
+
measure_power = gr.Checkbox(label="Power", value=True)
|
93 |
+
measure_timestamp = gr.Checkbox(label="Timestamp", value=True)
|
94 |
+
|
95 |
+
gr.Markdown("## π Graphs")
|
96 |
+
plot_type = gr.Dropdown(["Table", "Line Plot", "Histogram"], value="Table", label="Select Visualization")
|
97 |
+
|
98 |
+
refresh_btn = gr.Button("π Refresh Data")
|
99 |
+
|
100 |
+
with gr.Column(scale=8): # Main content (80% width)
|
101 |
+
df_display = gr.Dataframe(value=load_data(), label="Energy Data Table", interactive=False)
|
102 |
+
app.load(lambda: update_data(df_display))
|
103 |
+
line_plot = gr.LinePlot(visible=False, height="50vh", elem_classes="plot-container")
|
104 |
+
bar_plot = gr.BarPlot(visible=False, height="50vh", elem_classes="plot-container")
|
105 |
+
|
106 |
+
refresh_btn.click(
|
107 |
+
fn=generate_dashboard,
|
108 |
+
inputs=[plot_type, measure_power, measure_timestamp],
|
109 |
+
outputs=[df_display, line_plot, bar_plot]
|
110 |
+
)
|
111 |
+
|
112 |
+
plot_type.change(
|
113 |
+
fn=generate_dashboard,
|
114 |
+
inputs=[plot_type, measure_power, measure_timestamp],
|
115 |
+
outputs=[df_display, line_plot, bar_plot]
|
116 |
+
)
|
117 |
+
|
118 |
+
app.queue()
|
119 |
+
app.launch()
|