test_1 / app.py
aeresd's picture
Update app.py
932e610 verified
raw
history blame
4.98 kB
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st
from PIL import Image
import pytesseract
import pandas as pd
import plotly.express as px
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
emoji_model = AutoModelForCausalLM.from_pretrained(
emoji_model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu")
emoji_model.eval()
# ✅ Step 2: 可选择的冒犯性文本识别模型
model_options = {
"Toxic-BERT": "unitary/toxic-bert",
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
}
# ✅ 页面配置
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
# ✅ 侧边栏:模型选择
with st.sidebar:
st.header("🧠 Settings")
selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
selected_model_id = model_options[selected_model]
classifier = pipeline("text-classification", model=selected_model_id,
device=0 if torch.cuda.is_available() else -1)
# 初始化会话历史
if "history" not in st.session_state:
st.session_state.history = []
def classify_emoji_text(text: str):
prompt = f"输入:{text}\n输出:"
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
with torch.no_grad():
output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
result = classifier(translated_text)[0]
label = result["label"]
score = result["score"]
reasoning = (
f"The sentence was flagged as '{label}' due to potentially offensive phrases. "
"Consider replacing emotionally charged, ambiguous, or abusive terms."
)
st.session_state.history.append({
"text": text,
"translated": translated_text,
"label": label,
"score": score,
"reason": reasoning
})
return translated_text, label, score, reasoning
# 主页面布局
st.title("🚨 Emoji Offensive Text Detector & Analysis")
st.markdown("---")
# 输入与分析
st.header("✍️ Input & Moderation")
def text_moderation_section():
st.markdown("Enter text with emojis or upload an image with text.")
text = st.text_area("Sentence (or OCR text will appear here):", height=120)
uploaded_file = st.file_uploader("Or upload an image for OCR:", type=["jpg", "jpeg", "png"])
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
with st.spinner("Extracting text via OCR..."):
ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
st.text_area("Extracted Text:", value=ocr_text, height=120)
text = ocr_text
if st.button("🚦 Analyze Text") and text:
with st.spinner("Processing..."):
try:
translated, label, score, reason = classify_emoji_text(text)
st.subheader("🔄 Translated Text")
st.code(translated)
st.subheader(f"🎯 Prediction: {label}")
st.write(f"Confidence: {score:.2%}")
st.subheader("🧠 Explanation")
st.info(reason)
except Exception as e:
st.error(f"Error during processing: {e}")
# 分析仪表板
st.markdown("---")
st.header("📊 Violation Analysis")
def analysis_dashboard():
if not st.session_state.history:
st.info("No data to display. Please analyze some text first.")
return
df = pd.DataFrame(st.session_state.history)
# 建议列表
st.subheader("📝 Offensive Terms & Suggestions")
for item in st.session_state.history:
st.markdown(f"- **Input:** {item['text']}")
st.markdown(f" - Translated: {item['translated']}")
st.markdown(f" - Label: {item['label']} ({item['score']:.2%})")
st.markdown(f" - Suggestion: {item['reason']}")
# 雷达图
radar_df = pd.DataFrame({
"Category": ["Insult", "Abuse", "Discrimination", "Hate Speech", "Vulgarity"],
"Score": [0.7, 0.4, 0.3, 0.5, 0.6]
})
radar_fig = px.line_polar(
radar_df,
r='Score',
theta='Category',
line_close=True,
title="⚠️ Risk Radar by Category"
)
radar_fig.update_traces(line_color='black')
st.plotly_chart(radar_fig)
# 渲染各部分
text_moderation_section()
analysis_dashboard()