Spaces:
Runtime error
Runtime error
File size: 7,763 Bytes
4bdb245 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# OpenAI Compatible Server
`llama-cpp-python` offers an OpenAI API compatible web server.
This web server can be used to serve local models and easily connect them to existing clients.
## Setup
### Installation
The server can be installed by running the following command:
```bash
pip install llama-cpp-python[server]
```
### Running the server
The server can then be started by running the following command:
```bash
python3 -m llama_cpp.server --model <model_path>
```
### Server options
For a full list of options, run:
```bash
python3 -m llama_cpp.server --help
```
NOTE: All server options are also available as environment variables. For example, `--model` can be set by setting the `MODEL` environment variable.
Check out the server config reference below settings for more information on the available options.
CLI arguments and environment variables are available for all of the fields defined in [`ServerSettings`](#llama_cpp.server.settings.ServerSettings) and [`ModelSettings`](#llama_cpp.server.settings.ModelSettings)
Additionally the server supports configuration check out the [configuration section](#configuration-and-multi-model-support) for more information and examples.
## Guides
### Code Completion
`llama-cpp-python` supports code completion via GitHub Copilot.
*NOTE*: Without GPU acceleration this is unlikely to be fast enough to be usable.
You'll first need to download one of the available code completion models in GGUF format:
- [replit-code-v1_5-GGUF](https://huggingface.co/abetlen/replit-code-v1_5-3b-GGUF)
Then you'll need to run the OpenAI compatible web server with a increased context size substantially for GitHub Copilot requests:
```bash
python3 -m llama_cpp.server --model <model_path> --n_ctx 16192
```
Then just update your settings in `.vscode/settings.json` to point to your code completion server:
```json
{
// ...
"github.copilot.advanced": {
"debug.testOverrideProxyUrl": "http://<host>:<port>",
"debug.overrideProxyUrl": "http://<host>:<port>"
}
// ...
}
```
### Function Calling
`llama-cpp-python` supports structured function calling based on a JSON schema.
Function calling is completely compatible with the OpenAI function calling API and can be used by connecting with the official OpenAI Python client.
You'll first need to download one of the available function calling models in GGUF format:
- [functionary](https://huggingface.co/meetkai)
Then when you run the server you'll need to also specify either `functionary-v1` or `functionary-v2` chat_format.
Note that since functionary requires a HF Tokenizer due to discrepancies between llama.cpp and HuggingFace's tokenizers as mentioned [here](https://github.com/abetlen/llama-cpp-python/blob/main?tab=readme-ov-file#function-calling), you will need to pass in the path to the tokenizer too. The tokenizer files are already included in the respective HF repositories hosting the gguf files.
```bash
python3 -m llama_cpp.server --model <model_path_to_functionary_v2_model> --chat_format functionary-v2 --hf_pretrained_model_name_or_path <model_path_to_functionary_v2_tokenizer>
```
Check out this [example notebook](https://github.com/abetlen/llama-cpp-python/blob/main/examples/notebooks/Functions.ipynb) for a walkthrough of some interesting use cases for function calling.
### Multimodal Models
`llama-cpp-python` supports the llava1.5 family of multi-modal models which allow the language model to
read information from both text and images.
You'll first need to download one of the available multi-modal models in GGUF format:
- [llava-v1.5-7b](https://huggingface.co/mys/ggml_llava-v1.5-7b)
- [llava-v1.5-13b](https://huggingface.co/mys/ggml_llava-v1.5-13b)
- [bakllava-1-7b](https://huggingface.co/mys/ggml_bakllava-1)
- [llava-v1.6-34b](https://huggingface.co/cjpais/llava-v1.6-34B-gguf)
- [moondream2](https://huggingface.co/vikhyatk/moondream2)
Then when you run the server you'll need to also specify the path to the clip model used for image embedding and the `llava-1-5` chat_format
```bash
python3 -m llama_cpp.server --model <model_path> --clip_model_path <clip_model_path> --chat_format llava-1-5
```
Then you can just use the OpenAI API as normal
```python3
from openai import OpenAI
client = OpenAI(base_url="http://<host>:<port>/v1", api_key="sk-xxx")
response = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "<image_url>"
},
},
{"type": "text", "text": "What does the image say"},
],
}
],
)
print(response)
```
## Configuration and Multi-Model Support
The server supports configuration via a JSON config file that can be passed using the `--config_file` parameter or the `CONFIG_FILE` environment variable.
```bash
python3 -m llama_cpp.server --config_file <config_file>
```
Config files support all of the server and model options supported by the cli and environment variables however instead of only a single model the config file can specify multiple models.
The server supports routing requests to multiple models based on the `model` parameter in the request which matches against the `model_alias` in the config file.
At the moment only a single model is loaded into memory at, the server will automatically load and unload models as needed.
```json
{
"host": "0.0.0.0",
"port": 8080,
"models": [
{
"model": "models/OpenHermes-2.5-Mistral-7B-GGUF/openhermes-2.5-mistral-7b.Q4_K_M.gguf",
"model_alias": "gpt-3.5-turbo",
"chat_format": "chatml",
"n_gpu_layers": -1,
"offload_kqv": true,
"n_threads": 12,
"n_batch": 512,
"n_ctx": 2048
},
{
"model": "models/OpenHermes-2.5-Mistral-7B-GGUF/openhermes-2.5-mistral-7b.Q4_K_M.gguf",
"model_alias": "gpt-4",
"chat_format": "chatml",
"n_gpu_layers": -1,
"offload_kqv": true,
"n_threads": 12,
"n_batch": 512,
"n_ctx": 2048
},
{
"model": "models/ggml_llava-v1.5-7b/ggml-model-q4_k.gguf",
"model_alias": "gpt-4-vision-preview",
"chat_format": "llava-1-5",
"clip_model_path": "models/ggml_llava-v1.5-7b/mmproj-model-f16.gguf",
"n_gpu_layers": -1,
"offload_kqv": true,
"n_threads": 12,
"n_batch": 512,
"n_ctx": 2048
},
{
"model": "models/mistral-7b-v0.1-GGUF/ggml-model-Q4_K.gguf",
"model_alias": "text-davinci-003",
"n_gpu_layers": -1,
"offload_kqv": true,
"n_threads": 12,
"n_batch": 512,
"n_ctx": 2048
},
{
"model": "models/replit-code-v1_5-3b-GGUF/replit-code-v1_5-3b.Q4_0.gguf",
"model_alias": "copilot-codex",
"n_gpu_layers": -1,
"offload_kqv": true,
"n_threads": 12,
"n_batch": 1024,
"n_ctx": 9216
}
]
}
```
The config file format is defined by the [`ConfigFileSettings`](#llama_cpp.server.settings.ConfigFileSettings) class.
## Server Options Reference
::: llama_cpp.server.settings.ConfigFileSettings
options:
show_if_no_docstring: true
::: llama_cpp.server.settings.ServerSettings
options:
show_if_no_docstring: true
::: llama_cpp.server.settings.ModelSettings
options:
show_if_no_docstring: true
|