Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from TTS.api import TTS | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.tts.utils.text.phonemizer import Phonemizer | |
import os | |
import json | |
import scipy.io.wavfile as wavfile | |
import numpy as np | |
os.environ["COQUI_TOS_AGREED"] = "1" | |
device = "cuda" | |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device) | |
# Inicjalizacja tokenizera i fonemizera | |
tokenizer = TTSTokenizer(use_phonemes=False) | |
phonemizer = Phonemizer() | |
def clone(text, audio): | |
# Generowanie mowy | |
wav = tts.tts(text=text, speaker_wav=audio, language="pl") | |
# Konwersja do numpy array i zapisanie jako plik WAV | |
wav_np = np.array(wav) | |
wavfile.write("./output.wav", 24000, (wav_np * 32767).astype(np.int16)) | |
# Przetwarzanie tekstu na fonemy | |
tokens = tokenizer.text_to_ids(text) | |
phonemes = phonemizer.phonemize(tokens, language="pl") | |
# Przygotowanie informacji o fonemach | |
phonemes_data = [] | |
for i, phoneme in enumerate(phonemes): | |
phonemes_data.append({ | |
"phoneme": phoneme, | |
"index": i | |
}) | |
# Zapisywanie informacji o fonemach do pliku JSON | |
with open("./phonemes_info.json", "w", encoding="utf-8") as f: | |
json.dump(phonemes_data, f, ensure_ascii=False, indent=2) | |
return "./output.wav", "./phonemes_info.json" | |
# Interfejs Gradio | |
iface = gr.Interface( | |
fn=clone, | |
inputs=[ | |
gr.Textbox(label='Tekst do syntezy'), | |
gr.Audio(type='filepath', label='Plik audio z głosem referencyjnym') | |
], | |
outputs=[ | |
gr.Audio(type='filepath', label='Zsyntezowana mowa'), | |
gr.File(label='Informacje o fonemach (JSON)') | |
], | |
title='Klonowanie Głosu z Informacjami o Fonemach', | |
theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate") | |
) | |
iface.launch() |